1 / 19

بسم الله الرحمن الرحيم

بسم الله الرحمن الرحيم. Faculty of Computer and Information Basic Science department 2012/2013. Prof. Nabila.M.Hassan. Aims of Course: The graduates have to know the nature of vibration wave motions with emphasis on their mathematical descriptions and superposition.

kimhall
Download Presentation

بسم الله الرحمن الرحيم

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. بسم الله الرحمن الرحيم FCI

  2. Faculty of Computer and Information Basic Science department 2012/2013 Prof. Nabila.M.Hassan FCI

  3. Aims of Course: • The graduates have to know the nature of vibration wave motions with emphasis on their mathematical descriptions and superposition. • The fundamental ideas can be introduced with reference to mechanical systems which are easy to visualize. • The graduates have to know the nature of vibration and wave motions with emphasis on their mathematical description and superposition Developing the graduate's skills and creative thought needed to meet new trends in science. • Supplying graduates with basic attacks and strategies for solving problems. FCI

  4. 1- A particle oscillates with simple harmonic motion, so that its displacement varies according to the expression x = (5 cm)cos(2t + π/6) where x is in centimeters and t is in seconds. At t = 0 find(a) the displacement of the particle,(b) its velocity, and(c) its acceleration.(d) Find the period and amplitude of the motion. Solution: The displacement as a function of time is x(t) = A cos(ωt + φ). Here ω = 2/s, φ = π/6, and A = 5 cm. The displacement at t = 0 is x(0) = (5 cm)cos(π/6) = 4.33 cm. (b) The velocity at t = 0 is v(0) = -ω(5 cm)sin(π/6) = -5 cm/s. (c) The acceleration at t = 0 is a(0) = -ω2(5 cm)cos(π/6) = -17.3 cm/s2. (d) The period of the motion is T = π sec, and the amplitude is 5 cm. FCI

  5. 1-An oscillator consists of a block of mass 0.50 kg connected to a spring. When set into oscillation with amplitude 35 cm, it is observed to repeat its motion every 0.50 s. The maximum speed is : (a) 4.4 m/s ,(b) 44.0 m/s ,( c) 44.0 m/s 2-A particle executes linear harmonic motion about the point x = 0. At t = 0, it has displacement x = 0.37 cm and zero velocity. The frequency of the motion is 0.25 Hz. The max speed of the motion equal: (a) 0.59 cm/s ,(b) 5.9 cm/s ,( c) 0.059 cm/s 3- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1.2 m/s. The force constant of the spring is, (a) 100 N/m ,(b) 200 N/m ,( c) 20 N/m 4- An oscillating block-spring system has a mechanical energy of 1.0 J, amplitude of 0.10 m, and a maximum speed of 1.2 m/s. The mass of the block is, (a) 1.4 kg ,(b) 14.0 kg ,( c) .140 kg FCI

  6. Content: Part II: Waves Chapter 1 Oscillation Motion - Motion of a spring: - Energy of the Simple Harmonic Oscillator: - Comparing SHM with uniform motion - The simple pendulum: - Damped Oscillations: - Forced Oscillation FCI

  7. Objectives: • Student will be able to: • - Define the damped motion • - Define the resonance. • -Compare between free, damped and derived oscillations FCI

  8. Damped Oscillations: Where the force is proportional to the speed of the moving object and acts in the direction opposite the motion. The retarding force can be expressed as: R = - bv ( where b is a constant called damping coefficient) and the restoring force of the system is – kx, then we can write Newton's second law as When the retarding force is small compared with the max restoring force that is, b is small the solution is, FCI

  9. represent the position vs time for a damped oscillation with decreasing amplitude with time The fig. shows the position as a function in time of the object oscillation in the presence of a retarding force, the amplitude decreases in time, this system is know as a damped oscillator. The dashed line which defined the envelope of the oscillator curve, represent the exponential factor FCI

  10. The fig. represent position versus time: • under damped oscillator • critical damped oscillator • - Overdamped oscillator. as the value of "b" increase the amplitude of the oscillations decreases more and more rapidly. When b reaches a critical value bc ( ), the system does not oscillate and is said to be critically damped. And when the system is overdamped. FCI

  11. Forced Oscillation: For the forced oscillator is a damped oscillator driven by an external force that varies periodically Where where ω is the angular frequency of the driving force and Fo is a constant From the Newton's second law FCI

  12. is the natural frequency of the un-damped oscillator (b=0). The last two equations show the driving force and the amplitude of the oscillator which is constant for a given driving force. For small damping the amplitude is large when the frequency of the driving force is near the natural frequency of oscillation, or when ω͌ ≈ ωo the is called the resonance and the natural frequency is called the resonance frequency. FCI

  13. Amplitude versus the frequency, when the frequency of the driving force equals the natural force of the oscillator, resonance occurs. Note the depends of the curve as the value of the damping coefficient b. FCI

  14. Summary of the chapter: 1- The acceleration of the oscillator object is proportional to its position and is in the direction opposite the displacement from equilibrium, the object moves with SHM. The position x varies with time according to, 2- The time for full cycle oscillation is defined as the period, . For block spring moves as SHM on the frictionless surface with a period FCI

  15. and 3- The frequency is defined as the number of oscillation per second, is the inverse of the period 4- The velocity and the acceleration of SHM as a function of time are We not that the max speed is Aω , and the max acceleration is Aω2 . The speed is zero when the oscillator is at position of x=± A , and is a max when the oscillator is at the equilibrium position at the equilibrium position x=0. FCI

  16. 5- The kinetic energy and potential energy for simple harmonic oscillator are given by, The total energy of the SHM is constant of the motion and is given by 6- A simple pendulum of length L moves in SHM for small angular displacement from the vertical, its period is FCI

  17. 7- For the damping force R = - bv, its position for small damping is described by 8 - If an oscillator is driving with a force it exhibits resonance, in which the amplitude is largest when driving frequency matches the natural frequency of the oscillator. FCI

  18. What is the effect on the period of a pendulum of doubling its length? FCI

  19. Useful website http://cnx.org/content/m15880/latest/ http://www.acs.psu.edu/drussell/Demos/SHO/mass-force.html FCI

More Related