1 / 57

Understanding Cellular Automata in Biologically Inspired Computing

Learn about Cellular Automata (CA), a lattice of cells following simple rules to model dynamic systems. Explore examples, rules, and applications like forest fire spread simulation. Get insights into different types and classes of CA systems.

kimj
Download Presentation

Understanding Cellular Automata in Biologically Inspired Computing

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Cellular Automata This is week 7 of Biologically Inspired Computing Various credits for these slides, which have in part been adapted from slides by: Ajit Narayanan, Rod Hunt, Marek Kopicki.

  2. Cellular Automata • A CA is a spatial lattice of N cells, each of which is one of k states at time t. • Each cell follows the same simple rule for updating its state. • The cell's state s at time t+1 depends on its own state and the states of some number of neighbouring cells at t. • For one-dimensional CAs, the neighbourhood of a cell consists of the cell itself and r neighbours on either side. Hence, k and r are the parameters of the CA. • CAs are often described as discrete dynamical systems with the capability to model various kinds ofnatural discrete or continuous dynamical systems

  3. SIMPLE EXAMPLE Suppose we are interested in understanding how a forest fire spreads. We can do this with a CA as follows. Start by defining a 2D grid of `cells’, e.g.: This will be a spatial representation of our forest.

  4. SIMPLE EXAMPLE continued Now we define a suitable set of states. In this case, it makes sense for a cell to be either empty, ok_tree, or fire_tree – meaning: empty: no tree here ok_tree: there is a tree here, and it’s healthy fire_tree: there is a tree here, and it’s on fire. When we visualise the CA, we will use colours to represent the states. In these cases; white, green and red seem the right Choices.

  5. SIMPLE EXAMPLE continued Next we define the neighbourhood structure – when we run our CA, cells will change their state under the influence of their neighbours, so we have to define what counts as a “neighbour”. You’ll see example neighbourhoods in a later slide, but usually you just use a cell’s 9 immediately surrounding neighbours. Let’s do that in this case. Next we decide what the neighbourhood will be like at the boundaries of the grid.

  6. Example of 1-D cellular automaton • For a binary input N long, are there more 1s than 0s? • Set k=2 and r=1 with the following rule: Cell + 2 neighbours: Result: That is, the value of a cell at time t+1 will depend on its value and the values of its two immediate neighbours at time t. This is a form of ‘majority voting’ between all three cells.

  7. Density classification • In the above example, we have assumed wrap-around, and r=1. • In this case, the CA has reached a ‘limit point’ from which no escape is possible. • CAs have been used for simulating fluid dynamics, chemical oscillations, crystal growth, galaxy formation, stellar accretion disks, fractal patterns on mollusc shells, parallel formal language recognition, plant growth, traffic flow, urban segregation, image processing tasks, etc …

  8. See HIV CA demo – My Documents\students\hivca java Main 4 states: Healthy, Infected1, Infected2, Dead Rule 1 - If an H cell has at least one I1 neighbour, or if has at least 2 I2 neighbours, then it becomes I1. Otherwise, it stays healthy. Rule 2 – An I1 cell becomes I2 after 4 time steps (simulated weeks). (to operate this the CA maintains a counter associated with each I1 cell). Rule 3 - An I2 cell becomes D. Rule 4 – A D cell becomes H, with probability ; I1, with probability ; otherwise, it remains D

  9. Types of neighbourhood Many more neighbourhood techniques exist - see http://cell-auto.com and follow the link to ‘neighbourhood survey’

  10. Class 1: after a finite number of time steps, the CA tends to achieve a unique state from nearly all possible starting conditions (limit points) Class 2: the CA creates patterns that repeat periodically or are stable (limit cycles) – probably equivalent to a regular grammar/finite state automaton Class 3: from nearly all starting conditions, the CA leads to aperiodic-chaotic patterns, where the statistical properties of these patterns are almost identical (after a sufficient period of time) to the starting patterns (self-similar fractal curves) – computes ‘irregular problems’ Class 4: after a finite number of steps, the CA usually dies, but there are a few stable (periodic) patterns possible (e.g. Game of Life) - Class 4 CA are believed to be capable of universal computation Classes of cellular automata (Wolfram)

  11. John Conway’s Game of Life • 2D cellular automata system. • Each cell has 8 neighbors - 4 adjacent orthogonally, 4 adjacent diagonally. This is called the Moore Neighborhood.

  12. Simple rules, executed at each time step: • A live cell with 2 or 3 live neighbors survives to the next round. • A live cell with 4 or more neighbors dies of overpopulation. • A live cell with 1 or 0 neighbors dies of isolation. • An empty cell with exactly 3 neighbors becomes a live cell in the next round.

  13. Is it alive? • http://www.bitstorm.org/gameoflife/ • Compare it to the definitions…

  14. Glider

  15. Sequences

  16. More Sequence leading to Blinkers Clock Barber’s pole

  17. A Glider Gun

  18. Loops • Assumptions • Computation universality not required • Characteristics • 8 states, 2D Cellular automata • Needed CA grid of 100 cells • Self Reproduction into identical copy • Input tape with data and instructions • Concept of Death • Significance – Could be modeled through computer programs

  19. Langton’s Loop 0 – Background cell state 3, 5, 6 – Phases of reproduction 1 – Core cell state 4 – Turning arm left by 90 degrees 2 – Sheath cell state state 7 – Arm extending forward cell state

  20. Loop Reproduction

  21. Loop Death

  22. Langton’s Loops Chris Langton formulated a much simpler form of self-rep structure - Langton's loops - with only a few different states, and only small starting structures.

  23. There remains debate and interest about the `essentials of life’ issue with CAs, but their main BIC value is as modelling techniques. We’ve seen HIV – here are some more examples. Modelling Sharks and Fish: Predator/Prey Relationships Bill Madden, Nancy Ricca and Jonathan Rizzo Graduate Students, Computer Science Department Research Project using Department’s 20-CPU Cluster

  24. This project modeled a predator/prey relationship • Begins with a randomly distributed population of fish, sharks, and empty cells in a 1000x2000 cell grid (2 million cells) • Initially, • 50% of the cells are occupied by fish • 25% are occupied by sharks • 25% are empty

  25. Here’s the number 2 million • Fish: red; sharks: yellow; empty: black

  26. Rules A dozen or so rules describe life in each cell: • birth, longevity and death of a fish or shark • breeding of fish and sharks • over- and under-population • fish/shark interaction • Important: what happens in each cell is determined only by rules that apply locally, yet which often yield long-term large-scale patterns.

  27. Do a LOT of computation! • Apply a dozen rules to each cell • Do this for 2 million cells in the grid • Do this for 20,000 generations • Well over a trillion calculations per run! • Do this as quickly as you can

  28. Rules in detail: Initial Conditions Initially cells contain fish, sharks or are empty • Empty cells = 0 (black pixel) • Fish = 1 (red pixel) • Sharks = –1 (yellow pixel)

  29. Rules in detail: Breeding Rule Breeding rule: if the current cell is empty • If there are >= 4 neighbors of one species, and >= 3 of them are of breeding age, • Fish breeding age >= 2, • Shark breeding age >=3, and there are <4 of the other species: then create a species of that type • +1= baby fish (age = 1 at birth) • -1 = baby shark (age = |-1| at birth)

  30. Breeding Rule: Before

  31. Breeding Rule: After

  32. Rules in Detail: Fish Rules If the current cell contains a fish: • Fish live for 10 generations • If >=5 neighbors are sharks, fish dies (shark food) • If all 8 neighbors are fish, fish dies (overpopulation) • If a fish does not die, increment age

  33. Rules in Detail: Shark Rules If the current cell contains a shark: • Sharks live for 20 generations • If >=6 neighbors are sharks and fish neighbors =0, the shark dies (starvation) • A shark has a 1/32 (.031) chance of dying due to random causes • If a shark does not die, increment age

  34. Shark Random Death: Before I Sure Hope that the random number chosen is >.031

  35. Shark Random Death: After YES IT IS!!! I LIVE 

  36. Sample Code (C++): Breeding JR

  37. Results • Next several screens show behavior over a span of 10,000+ generations

  38. Generation: 0 BM

  39. Generation: 100 BM

  40. Generation: 500

  41. Generation: 1,000

  42. Generation: 2,000

  43. Generation: 4,000

  44. Generation: 8,000

  45. Generation: 10,500

  46. Long-term trends • Borders tended to ‘harden’ along vertical, horizontal and diagonal lines • Borders of empty cells form between like species • Clumps of fish tend to coalesce and form convex shapes or ‘communities’

  47. Variations of Initial Conditions • Still using randomly distributed populations: • Medium-sized population. Fish/sharks occupy: 1/16th of total grid Fish: 62,703; Sharks: 31,301 • Very small population. Fish/sharks occupy: 1/800th of total grid Initial population: Fish: 1,298; Sharks: 609

  48. Medium-sized population (1/16 of grid) Generation 100 1000 2000 4000 8000

  49. Very Small Populations • Random placement of very small populations can favor one species over another • Fish favored: sharks die out • Sharks favored: sharks predominate, but fish survive in stable small numbers

  50. Very Small Populations 1500 4000 6000 Gen. 100 8000 10,000 12,000 14,000 Ultimate welfare of sharks depends on initial random placement of fish and sharks

More Related