1 / 73

Computer Modeling  And  Simulation

Computer Modeling  And  Simulation. F.Ramezani Department of Computer Engineering Islamic Azad University SARI Branch. Introduction to Computer Modeling And Simulation. مقدمه.

kina
Download Presentation

Computer Modeling  And  Simulation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer Modeling And Simulation F.Ramezani Department of Computer Engineering Islamic Azad University SARI Branch Introduction toComputer Modeling AndSimulation

  2. مقدمه • شبکهعصبیمصنوعیروشیعملیبراییادگیریتوابعگوناگوننظیرتوابعبامقادیرحقیقی،توابعبامقادیرگسستهوتوابعبامقادیربرداریمیباشد. • یادگیریشبکهعصبیدربرابرخطاهایدادههایآموزشیمصونبودهواینگونهشبکههاباموفقیتبهمسائلینظیر، تصمیم گیری، شناسائیگفتار،شناسائیوتعبیرتصاویر،ویادگیریرباتاعمالشدهاست. Neural Network

  3. شبکهعصبیچیست؟ • روشیبرایمحاسبهاستکهبرپایهاتصالبههمپیوستهچندینواحدپردازشیساختهمیشود. • شبکهازتعداددلخواهیسلولیاگرهیاواحدیانرونتشکیلمیشودکهمجموعهورودیرابهخروجیربطمیدهند. Neural Network

  4. شبکهعصبیچهقابلیتهائیدارد؟ • تصمیم گیری • محاسبهیکتابعمعلوم • تقریبیکتابعناشناخته • شناسائیالگو • پردازشسیگنال • یادگیری Neural Network

  5. مسائلمناسببراییادگیریشبکههایعصبیمسائلمناسببراییادگیریشبکههایعصبی • خطا در داده های آموزشی وجود داشته باشد. مثلمسائلی که داده های آموزشی دارای نویز حاصل از دادهای سنسورها نظیر دوربین و میکروفن ها هستند. • مواردی که نمونه ها توسط مقادیر زیادی زوج ویژگی-مقدار نشان داده شده باشند. نظیر داده های حاصل از یک دوربین ویدئوئی. • تابع هدف دارای مقادیر پیوسته باشد. • زمان کافی برای یادگیری وجود داشته باشد. این روش در مقایسه با روشهای دیگر نظیر درخت تصمیم نیاز به زمان بیشتری برای یادگیری دارد. • نیازیبهتعبیرتابعهدفنباشد. زیرابهسختیمیتواناوزانیادگرفتهشدهتوسطشبکهراتعبیرنمود. Neural Network

  6. الهامازطبیعت • مطالعهشبکههایعصبیمصنوعیتاحدزیادیملهمازسیستمهاییادگیرطبیعیاستکهدرآنهایکمجموعهپیچیدهازنرونهایبههممتصلدرکاریادگیریدخیلهستند. • گمانمیرودکهمغزانسانازتعداد 10 11نرونتشکیلشدهباشدکههرنرونباتقریبا 104نروندیگردرارتباطاست. • سرعتسوئیچنگنرونهادرحدود 10-3ثانیهاستکهدرمقایسهباکامپیوترها 10 -10 ) ثانیه ( بسیارناچیزمینماید. بااینوجودآدمیقادراستدر 0.1 ثانیهتصویریکانسانرابازشناسائینماید. اینقدرتفوقالعادهبایدازپردازشموازیتوزیعشدهدرتعدادیزیادیازنرونهاحاصلشدهباشد. Neural Network

  7. Biological Neural System • A human brain consists of about 1011 computing elements called neurons. They communicate through synaptic connections. Each neuron has about 10,000 synapses. Neural Network

  8. Perceptron • نوعیازشبکهعصبیبرمبناییکواحدمحاسباتیبهنام پرسپترونساختهمیشود. یک پرسپترونبرداریازورودیهایبامقادیرحقیقیراگرفتهویکترکیبخطیازاینورودیهارامحاسبهمیکند. اگرحاصلازیکمقدارآستانهبیشتربودخروجی پرسپترونبرابربا 1 ودرغیراینصورتمعادل -1 خواهدبود. x1 w1 x2 w2 {1 or –1} Σ w0 wn xn X0=1 Neural Network

  9. A simple neural model as a multi input (dendrites) and single-output (axon) processor Components: 1) Dendrites 2) Synapse 3) Soma 4)Axon Neural Network

  10. Simple model of a neuron showing (a) synaptic and (b) somatic operations Neural Network

  11. Neural Networks Notations Neural Network

  12. Neuron Model Neural Network

  13. یادگیرییک پرسپترون • خروحی پرسپترونتوسطرابطهزیرمشخصمیشود: • کهبرایسادگیآنرامیتوانبصورتزیرنشانداد: 1 if w0 + w1x1 + w2x2 + … + wnxn > 0 -1 otherwise O(x1,x2,…,xn) = O(X) = sgn(WX) where Sgn(y) = 1 if y > 0 -1 otherwise یادگیری پرسپترونعبارتاستاز: پیداکردنمقادیردرستیبرای W بنابراینفضایفرضیه H دریادگیری پرسپترونعبارتاستازمجموعهتماممقادیرحقیقیممکنبرایبردارهایوزن. Neural Network

  14. توانائیپرسپترون • پریسپترونرامیتوانبصورتیکسطحتصمیمhyperplaneدرفضای n بعدینمونههادرنظرگرفت. پرسپترونبراینمونههاییکطرفصفحهمقدار 1 وبرایمقادیرطرفدیگرمقدار -1 بوجودمیاورد. Decision boundary (WX = 0) + + + - - - Neural Network

  15. توابعیکه پرسپترونقادربهیادگیریآنهامیباشد • یک پرسپترونفقطقادراستمثالهائیرایادبگیردکهبصورتخطیجداپذیرباشند. اینگونهمثالهامواردیهستندکهبطورکاملتوسطیکhyperplaneقابلجداسازیمیباشند. + + + + + - - + - - - - Linearly separable Non-linearly separable Neural Network

  16. توابعبولیو پرسپترون • یک پرسپترونمیتواندبسیاریازتوابعبولیرانمایشدهدنظیر AND, OR, NAND, NOR • امانمیتواند XORرانمایشدهد. • درواقعهرتابعبولیرامیتوانباشبکهایدوسطحیاز پرسپترونهانشانداد. x1 AND: W1=0.5 Σ W2=0.5 W0 = -0.8 x2 X0=1 Neural Network

  17. اضافه کردن بایاس • افزودن بایاس موجب میشود تا استفاده از شبکه پرسپترون با سهولت بیشتری انجام شود. • برای اینکه برای یادگیری بایاس نیازی به استفاده از قانون دیگری نداشته باشیم بایاس را بصورت یک ورودی با مقدار ثابت 1 در نظر گرفته و وزن W0 را به آن اختصاص میدهیم. Neural Network

  18. Neuron Model Neural Network

  19. آموزش پرسپترون • چگونهوزنهاییک پرسپترونواحدرایادبگیریمبهنحویکه پرسپترونبرایمثالهایآموزشیمقادیرصحیحراایجادنماید؟ • دوراهمختلف : • قانون پرسپترون • قانوندلتا Neural Network

  20. آموزش پرسپترون الگوریتمیادگیری پرسپترون • مقادیریتصادفیبهوزنهانسبتمیدهیم • پریسپترونرابهتکتکمثالهایآموزشیاعمالمیکنیم. اگرمثالغلطارزیابیشودمقادیروزنهای پرسپترونراتصحیحمیکنیم. • آیاتمامیمثالهایآموزشیدرستارزیابیمیشوند: • بله پایانالگوریتم • خیربهمرحله 2 برمیگردیم Neural Network

  21. Neural Networks Architecture Neural Network

  22. قانون پرسپترون • براییکمثالآموزشیX = (x1, x2, …, xn)درهرمرحلهوزنهابراساسقانونپرسپترونبصورتزیرتغییرمیکند: wi = wi + Δwi کهدرآن Δwi = η ( t – o ) xi t: target output o: output generated by the perceptron η: constant called the learning rate (e.g., 0..1) اثباتشدهاستکهبراییکمجموعهمثالجداپذیرخطیاینروشهمگراشدهو پرسپترونقادربهجداسازیصحیحمثالهاخواهدشد. Neural Network

  23. قانوندلتا Delta Rule • وقتیکهمثالهابصورتخطیجداپذیرنباشندقانون پرسپترونهمگرانخواهدشد. برایغلبهبراینمشکلازقانوندلتااستفادهمیشود. • ایدهاصلیاینقانوناستفادهاز gradient descent برایجستجودرفضایفرضیهوزنهایممکنمیباشد. اینقانونپایهروش Backpropagation استکهبرایآموزششبکهباچندیننرونبههممتصلبکارمیرود. • همچنیناینروشپایهایبرایانواعالگوریتمهاییادگیریاستکهبایدفضایفرضیهایشاملفرضیههایمختلفپیوستهراجستجوکنند. Neural Network

  24. قانوندلتا Delta Rule • برایدرکبهتراینروشآنرابهیک پرسپترونفاقدحدآستانهاعمالمیکنیم. درانجالازماستابتداتعریفیبرایخطایآموزشارائهشود. یکتعریفمتداولاینچنیناست: E = ½ Σi (ti – oi) 2 • کهاینمجموعبرایتماممثالهایآموزشیانجاممیشود. Neural Network

  25. الگوریتم gradient descent • باتوجهبهنحوهتعریف E سطحخطابصورتیکسهمیخواهدبود. مابدنبالوزنهائیهستیمکهحداقلخطاراداشتهباشند . الگوریتم gradient descent درفضایوزنهابدنبالبرداریمیگرددکهخطاراحداقلکند. اینالگوریتمازیکمقداردلبخواهبرایبرداروزنشروعکردهودرهرمرحلهوزنهاراطوریتغییرمیدهدکهدرجهتشیبکاهشیمنحنیفوقخطاکاهشدادهشود. E(W) w1 w2 Neural Network

  26. بدستآوردنقانون gradient descent • ایدهاصلی: گرادیانهموارهدرجهتافزایششیب E عملمیکند. • گرادیان E نسبتبهبرداروزن w بصورتزیرتعریفمیشود: E (W) = [ E’/w0, E’/w1, …, E’/wn] • کهدرآن E (W) یکبردارو E’مشتقجزئینسبتبههروزنمیباشد. Δ Δ Neural Network

  27. قانوندلتا Delta Rule • براییکمثالآموزشیX = (x1, x2, …, xn)درهرمرحلهوزنهابراساسقانوندلتابصورتزیرتغییرمیکند: wi = wi + Δwi Where Δwi = -η E’(W)/wi η: learning rate (e.g., 0.1) علامتمنفینشاندهندهحرکتدرجهتافزایش شیباست. Neural Network

  28. محاسبهگرادیان • بامشتقگیریجزئیازرابطهخطامیتوانبسادگیگرادیانرامحاسبهنمود: E’(W)/ wi = Σi (ti – Oi) (-xi) • لذاوزنهاطبقرابطهزیرتغییرخواهندنمود. Δwi = η Σi (ti – oi) xi Neural Network

  29. خلاصهیادگیریقانوندلتا الگوریتمیادگیریبااستفادهازقانوندلتابصورتزیرمیباشد. • بهوزنهامقدارتصادفینسبتدهید • تارسیدنبهشرایطتوقفمراحلزیرراادامهدهید • هروزنwiرابامقدارصفرعدددهیاولیهکنید. • برایهرمثال: وزنwiرابصورتزیرتغییردهید: wi = wi + η (t – o) xi مقدارwiرابصورتزیرتغییردهید: wi = wi + wi تاخطابسیارکوچکشود Δ Δ Δ Δ Δ Neural Network

  30. مشکلاتروش gradient descent • ممکناستهمگراشدنبهیکمقدارمینیممزمانزیادیلازمداشتهباشد. • اگردرسطحخطاچندینمینیمممحلیوجودداشتهباشدتضمینیوجودنداردکهالگوریتممینیمممطلقراپیدابکند. درضمناینروشوقتیقابلاستفادهاستکه: • فضایفرضیهدارایفرضیههایپارامتریکپیوستهباشد. • رابطهخطاقابلمشتقگیریباشد Neural Network

  31. مقایسه آموزش یکجا و افزایشی • آموزش یکجا (Batch learning) • آموزش افزایشی (Online learning) w1 w1 w2 Neural Network w2

  32. شبکههایچندلایه برخلاف پرسپترونهاشبکههایچندلایهمیتوانندبراییادگیریمسائلغیرخطیوهمچنینمسائلیباتصمیمگیریهایمتعددبکارروند. Output nodes Internal nodes Input nodes Neural Network

  33. مثال x2 x1 Neural Network

  34. یکسلولواحد برایاینکهبتوانیمفضایتصمیمگیریرابصورتغیرخطیازهمجدابکنیم،لازماستتاهرسلولواحدرابصورتیکتابعغیرخطیتعریفنمائیم. مثالیازچنینسلولیمیتواندیکواحدسیگموئیدباشد: x1 w1 x2 net w2 Σ O = σ(net) = 1 / 1 + e -net w0 wn xn X0=1 Neural Network

  35. Activation Function Neural Network

  36. تابعسیگموئید خروجیاینسلولواحدرابصورتزیرمیتوانبیاننمود: O(x1,x2,…,xn) = σ ( WX ) where: σ ( WX ) = 1 / 1 + e -WX تابعσتابعسیگموئیدیالجستیکنامیدهمیشود. اینتابعدارایخاصیتزیراست: d σ(y) / dy = σ(y) (1 – σ(y)) Neural Network

  37. الگوریتم Back propagation • براییادگیریوزنهاییکشبکهچندلایهازروش Back Propagation استفادهمیشود. دراینروشبااستفادهاز gradient descent سعیمیشودتامربعخطایبینخروجیهایشبکهوتابعهدفمینیممشود. • خطابصورتزیرتعریفمیشود: مرادازoutputs خروجیهایمجموعهواحدهایلایهخروجیوtkdوokdمقدارهدفوخروجیمتناظربا k امینواحدخروجیومثالآموزشی d است. Neural Network

  38. الگوریتم Back propagation • فضایفرضیهموردجستجودراینروشعبارتاستازفضایبزرگیکهتوسطهمهمقادیرممکنبرایوزنهاتعریفمیشود. روش gradient descent سعیمیکندتابامینیممکردنخطابهفرضیهمناسبیدستپیداکند. اماتضمینیبرایاینکهاینالگوریتمبهمینیمممطلقبرسدوجودندارد. Neural Network

  39. الگوریتم BP • شبکهایباninگرهورودی،nhiddenگرهمخفی،وnoutگرهخروجیایجادکنید. • همهوزنهارابایکمقدارتصادفیکوچکعدددهیکنید. • تارسیدنبهشرطپایانی ) کوچکشدنخطا( مراحلزیرراانجامدهید: برایهر xمتعلقبهمثالهایآموزشی: مثال X رابهسمتجلودرشبکهانتشاردهید خطای E رابهسمتعقبدرشبکهانتشاردهید. هرمثالآموزشیبصورتیکزوج (x,t) ارائهمیشودکهبردار x مقادیرورودیوبردار t مقادیرهدفبرایخروجیشبکهراتعیینمیکنند. Neural Network

  40. انتشاربهسمتجلو • برایهرمثال X مقدارخروجیهرواحدرامحاسبهکنیدتابهگرههایخروجیبرسید. Output nodes Compute sigmoid function Internal nodes Input nodes Example X Neural Network

  41. انتشاربهسمتعقب • برایهرواحدخروجیجملهخطارابصورتزیرمحاسبهکنید: δk = Ok (1-Ok)(tk – Ok) • برایهرواحدمخفیجملهخطارابصورتزیرمحاسبهکنید: δh = Oh (1-Oh) ΣkWkhδk • مقدارهروزنرابصورتزیرتغییردهید: Wji = Wji + ΔWji کهدرآن : ΔWji = η δjXji ηعبارتاستازنرخیادگیری Neural Network

  42. -perceptron adaptation rule Neural Network

  43. شرطخاتمه معمولاالگوریتم BP پیشازخاتمههزارانباربااستفادههماندادههایآموزشیتکرارمیگرددشروطمختلفیرامیتوانبرایخاتمهالگوریتمبکاربرد: • توقفبعدازتکراربهدفعاتمعین • توقفوقتیکهخطاازیکمقدارتعیینشدهکمترشود. • توقفوقتیکهخطادرمثالهایمجموعهتائیدازقاعدهخاصیپیروینماید. اگردفعاتتکرارکمباشدخطاخواهیمداشتواگرزیادباشدمسئلهOverfittingرخخواهدداد. Neural Network

  44. محنی یادگیری Neural Network

  45. Neural Network

  46. Neural Network

  47. مرورالگوریتم BP • اینالگوریتمیکجستجوی gradient descent درفضایوزنهاانجاممیدهد. • ممکناستدریکمینیمممحلیگیربیافتد • درعملبسیارموثربودهاست برایپرهیزازمینیمممحلیروشهایمختلفیوجوددارد: • افزودنممنتم • استفادهازstochastic gradient descent • استفادهازشبکههایمختلفبامقادیرمتفاوتیبرایوزنهایاولیه Neural Network

  48. افزودنممنتم • میتوانقانونتغییروزنهاراطوریدرنظرگرفتکهتغییروزندرتکرار n امتاحدیبهاندازهتغییروزندرتکرارقبلیبستگیداشتهباشد. ΔWji (n) = η δjXji + αΔWji (n-1) کهدرآنمقدارممنتمα بصورت0 <= α <= 1میباشد. افزودنممنتمباعثمیشودتاباحرکتدرمسیرقبلیدرسطحخطا: • ازگیرافتادندرمینیممحلیپرهیزشود • ازقرارگرفتندرسطوحصافپرهیزشود • باافزایشتدریجیمقدارپلهتغییرات،سرعتجستجوافزایشیابد. قانونتغییروزن عبارتممنتم Neural Network

  49. قدرتنمایشتوابع • گرچهقدرتنمایشتوابعبهتوسطیکشبکهfeedforwardبستهبهعمقوگستردگیشبکهدارد،بااینوجودمواردزیررامیتوانبهصورتقوانینکلیبیاننمود: • توابعبولی: هرتابعبولیرامیتوانتوسطیکشبکهدولایهپیادهسازینمود. • توابعپیوسته: هرتابعپیوستهمحدودرامیتوانتوسطیکشبکهدولایهتقریبزد. تئوریمربوطهدرموردشبکههائیکهازتابعسیگموئیددرلایهپنهانولایهخطیدرشبکهخروجیاستفادهمیکنندصادقاست. • توابعدلخواه:هرتابعدلخواهرامیتوانبایکشبکهسهلایهتاحدقابلقبولیتفریبزد. بااینوجودبایددرنظرداستکهفضایفرضیهجستجوشدهتوسطروش gradient deescentممکناستدربرگیرندهتماممقادیرممکنوزنهانباشد. Neural Network

  50. فضایفرضیهوبایاساستقرا • فضایفرضیهموردجستجورامیتوانبصورتیکفضایفرضیهاقلیدسی n بعدیازوزنهایشبکهدرنظرگرفت )کهn تعدادوزنهاست( • اینفضایفرضیهبرخلاففضایفرضیهدرختتصمیمیکفضایپیوستهاست. • بایاساستقرااینروشرامیتوانبصورتزیربیانکرد: “smooth interpolation between data points” بهاینمعناکهالگوریتم BP سعیمیکندتانقاطیراکهبههمنزدیکترهستنددریکدستهبندیقراردهد. Neural Network

More Related