70 likes | 192 Views
Linear Motion Equations. By Jessica Hall Period 2. Displacement- Frame of Reference. ∆x = f-i ∆x=f-i :-10-0 = -10 :10-0=0 f= -10 i=0. Variables for Linear Motion. d = displacement (∆x ) t = time of travel (∆t) a = rate of constant acceleration
E N D
Linear Motion Equations By Jessica Hall Period 2
Displacement- Frame of Reference ∆x = f-i ∆x=f-i :-10-0 = -10 :10-0=0 f= -10 i=0
Variables for Linear Motion • d = displacement (∆x) • t = time of travel (∆t) • a = rate of constant acceleration • vi = initial velocity • vf = final velocity
Equation 1 • ā = ∆v / ∆t = (Vf-Vi)/(Tf-Ti); • a/1=(Vf-Vi)/t; • at=Vf-Vi; • atVvi=Vf; • Vf=Vi+at(equation # 1)
Equation 2 • v = ∆x/ ∆t; • ∆x=d, ∆t=t, V =1/2(vi+vf); • ½(Vi+Vf)=d/t; • t/2(Vi+Vf)=d or ½((Vi+Vf)t (equation # 2).
Equation 3 Vf=Vi+at #1 into ½((Vi+Vf)t d = ½(Vi + at + Vi)td = ½(2Vi + at)t d = (Vi + ½at)t (equation # 3)
Equation 4 • Vf= Vi +at; • Vf-Vi=at; • (Vf-Vi)/a=t. (i) • D=1/2(Vi+Vf)/[(Vf-Vi)/a]; • D=[(Vi+Vf)(Vf-Vi)]2a; • D=(VfVi+Vf^2-Vi^2VfVi)/2a • D=(Vf^2-Vi^2)/2a • 2ad=Vf^2-Vi^2 • Vf^2=2ad+Vi^2 (equation # 4).