1 / 54

Logic Programming

Logic Programming. Logic-based Adopt the syntax from logic for both data and programs A logic variable is a symbol for an object in a domain Use resolution to infer new propositions from given ones Declarative : state what should be done rather than how Language features of Prolog

kiora
Download Presentation

Logic Programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Logic Programming • Logic-based • Adopt the syntax from logic for both data and programs • A logic variable is a symbol for an object in a domain • Use resolution to infer new propositions from given ones • Declarative: state what should be done rather than how • Language features of Prolog • A program consists of relations defined by facts and rules • Pattern matching • Recursion • Nondeterminism realized through backtracking by Neng-Fa Zhou

  2. A Brief History • Robinson’s resolution theorem prover (65) • Colmerauer’s NLP project and Q system (early 70’s) • Kowalski’s Horn clauses and SLD resolution (early 70’s) • D.H.D. Warren’s work in the implementation (late 70’s) • Japanese Fifth Generation Project and follow-up projects in Europe and USA (early 80’s) • Constraint logic programming (late 80’s) by Neng-Fa Zhou

  3. Syntax of Prolog • Term • Atom • string of letters, digits, and '_' starting with a low-case letter • string of characters enclosed in quotes • Number • integer & real • Variable • string of letters, digits and '_' starting with a capital letter or '_' by Neng-Fa Zhou

  4. Syntax of Prolog (Cont) • Structure • f(t1,t2,...,tn) • f is an atom, called the functor of the structure • t1,t2,...,tn are terms • List • '.'(H,T) => [H|T] • '.'(1,'.'(2,'.'(3,[]))) => [1,2,3] by Neng-Fa Zhou

  5. Syntax of Prolog (Cont) • Clause • Fact • p(t1,t2,...,tn) • Rule • H :- B1,B2,...,Bm. • Predicate • a sequence of clauses • Program • a set of predicates • Query Head Body by Neng-Fa Zhou

  6. Syntax: Examples • Facts • Rules • Queries father(terach,abraham).male(terach). parent(Parent,Child):-father(Parent,Child). parent(Parent,Child):-mother(Parent,Child). uncle(Uncle,Person) :- brother(Uncle,Parent), parent(Parent,Person). ?-parent(Parent,abraham). by Neng-Fa Zhou

  7. Unification • t1 = t2 succeeds if • t1 and t2 are identical • there exists a substitution q for the variables in t1 and t2 such that t1q = t2q. f(X,b)=f(a,Y). X=a Y=b q = {X/a, Y/b} by Neng-Fa Zhou

  8. Unification: Examples assignment test test matching unification without occur checking ?-X=1. X=1 ?- f(a,b)=f(a,b). yes ?- a=b. no ?- f(X,Y)=f(a,b) X=a Y=b ?-f(X,b)=f(a,Y). X=a Y=b ?-X = f(X). X=f(f(...... by Neng-Fa Zhou

  9. Unification • unify(t1,t2) • if t1 is a variable, then bind t1 to t2 • if t2 is a variable, then bind t2 to t1 • if t1 and t2 are both atomic values • if t1 and t2 are identical return true • otherwise, return false • t1=f(a1,...,an) and t2=g(b1,...,bm) • if f != g || m != n return false • return unify(a1,b1) && ... && unify(an,bm) by Neng-Fa Zhou

  10. Operational Semantics of Prolog (Resolution) • G0: initial query • Gi: (A1,A2,...,An) • H:-B1,...,Bm • A1q=H1q • Gi+1: (B1,...,Bm,A2,...,An)q Succeed if Gk is empty for some k.Backtrack if Gk is a dead end (no clause can be used). by Neng-Fa Zhou

  11. Deductive Database parent(Parent,Child):-father(Parent,Child). parent(Parent,Child):-mother(Parent,Child). uncle(Uncle,Person) :- brother(Uncle,Parent), parent(Parent,Person). sibling(Sib1,Sib2) :- parent(Parent,Sib1), parent(Parent,Sib2), Sib1 \= Sib2. cousin(Cousin1,Cousin2) :- parent(Parent1,Cousin1), parent(Parent2,Cousin2), sibling(Parent1,Parent2). by Neng-Fa Zhou

  12. Exercise • Will the following unification operations succeed or fail? If they succeed, what are the substitutions? • point(A,B) = point(1,2) • point(A,B) = point(X,Y,Z) • plus(2,2) = 4 • +(2,D) = +(E,2) • tri(point(-1,0),P2,P3) = tri(P1,point(1,0),point(0,Y)) by Neng-Fa Zhou

  13. Exercise • Define the following relations • son(X,Y) -- X is a son of Y • daughter(X,Y) -- X is a daughter of Y • grandfather(X,Y) -- X is the grandfather of Y • grandparent(X,Y) -- X is a grandparent of Y • ancestor(X,Y) – X is an ancestor of Y by Neng-Fa Zhou

  14. Built-ins in Prolog • Unification • T1 = T2 • T1 \= T2 • Arithmetic • X is Exp • Exp =:= Exp, Exp =\= Exp • Exp >= Exp, Exp > Exp • Exp =< Exp, Exp < Exp X can be a variable or a ground expression Exp must be a groundexpression by Neng-Fa Zhou

  15. Examples(=, \=, is, =:=, =\=, >, >=, <, =<) by Neng-Fa Zhou

  16. Built-ins in Prolog (cont.) • arg(N,T,A) • The Nth argument of T is A • functor(T,F,N) • the functor of T is F/N. • T1==T2 • T1 and T2 are identical • T1 \== T2 • T1 and T2 are not identical by Neng-Fa Zhou

  17. Examples(arg, functor, ==, \==) by Neng-Fa Zhou

  18. Recursive Programming • Recursively defined data structures • S-expressions • 0, s(0), s(s(0)), … • Lists • [], [X|L] • Binary trees • void, t(N,L,R) by Neng-Fa Zhou

  19. Recursive Programming on S-Expressions • Definition of S-Expressions • 0, s(0), s(s(0)),.... • sum(X,Y,Z) -- X+Y makes Z • prod(X,Y,Z) -- X*Y makes Z sum(0,Y,Y). sum(s(X),Y,s(Z)):-sum(X,Y,Z). prod(0,Y,0). prod(s(X),Y,Z):- prod(X,Y,Z1), sum(Z1,Y,Z). by Neng-Fa Zhou

  20. Recursive Programming on S-Expressions (Cont.) • Conversion of integers to s-expressions int2s(0,0). int2s(N,s(S)):- N>0, N1 is N-1, int2s(N1,S). by Neng-Fa Zhou

  21. Exercise • Define the following arithmetic operations on natural numbers. • power(X,Y,Z) XY=Z • factorial(X,Y) X!=Y • lt(X,Y) X is less than Y • one_hundred(X) X = 100 (s(s(....(s(0)))...) • sum_1_to_100(X) X = 1+2+...+100 by Neng-Fa Zhou

  22. Recursive Programming on Lists • A list is a special structure whose functor is '.'/2 • [] • '.'(H,T) => [H|T] • '.'(1,'.'(2,'.'(3,[]))) => [1,2,3] • Unification of lists • [X|Xs]=[1,2,3] X= 1 Xs=[2,3] • [1,2,3] = [1|[2|X]] X=[3] • [1,2|3] = [1|X] X=[2|3] by Neng-Fa Zhou

  23. Relations on Lists • isList(Xs) • member(X,Xs) • append(Xs,Ys,Zs) • length(Xs,N) isList([]). isList([X|Xs]):-isList(Xs). member(X,[X|Xs]). member(X,[_|Xs]):-member(X,Xs). append([],Ys,Ys). append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs). length([],0). length([X|Xs],N):-length(Xs,N1),N is N1+1. by Neng-Fa Zhou

  24. Implement the following predicates. length(Xs,N) the length of Xs is N last(X,Xs) X is the last element of Xs. prefix(Pre,Xs) Pre is a prefix of Xs. suffix(Pos,Xs) suffix is a postfix of Xs reverse(Xs,Ys) Ys is the reverse of Xs sum(Xs,N) N is the sum of the integers in the list Xs sum1(Xs,Ys) assume Xs is [x1,x2,...,xn], then Ys will be [y1,y2,...,yn] where yi is xi+1. sort(L,SortedL) use the exchange sort algorithm Exercise by Neng-Fa Zhou

  25. Recursive Programming on Binary Trees • Representation of binary trees • Example void -- empty tree t(N, L,R) -- N : node L : Left child R : Right child a t(a, t(b, void,void), t(c,void,void)) c b by Neng-Fa Zhou

  26. Relations on Binary Trees • isBinaryTree(T)-- T is a binary tree • count(T,C) -- C is the number of nodes in T. isBinaryTree(void). isBinaryTree(t(N,L,R)):- isBinaryTree(L), isBinaryTree(R). count(void,0). count(t(N,L,R),N):- count(L,N1), count(R,N2), N is N1+N2+1. by Neng-Fa Zhou

  27. Relations on Binary Trees (Cont.) • preorder(T,L) • L is a pre-order traversal of the binary tree T. preorder(void,[]). preorder(t(N,Left,Right),L):- preorder(Left,L1), preorder(Right,L2), append([N|L1],L2,L). by Neng-Fa Zhou

  28. Exercise • Write the following predicates on binary trees. • leaves(T,L): L is the list of leaves in T. The order is preserved. • equal(T1,T2): T1 and T2 are the same tree. • postorder(T,L): L is the post-order traversal of T. by Neng-Fa Zhou

  29. Tail Recursive Programs and Difference Lists • Recursion is slower and consumes more space than iteration. • Prolog compilers perform Tail-Recursion-Optimization, which converts tail recursion into iteration. • In general, tail-recursive programs are more efficient than non-tail-recursive programs. by Neng-Fa Zhou

  30. Tail-Recursive PredicatesExample: product prod(0,Y,0). prod(s(X),Y,Z):- prod(X,Y,Z1), sum(Z1,Y,Z). Accumulator prod(X,Y,Z):- prod(X,Y,0,Z). prod(0,Y,Z,Z). prod(s(X),Y,Z0,Z):- sum(Y,Z0,Z1), prod(X,Y,Z1,Z). by Neng-Fa Zhou

  31. Example: length length([],0). length([X|Xs],N):- length(Xs,N1), N is N1+1. length(Xs,N):- length(Xs,0,N). length([],N,N). length([X|Xs],N0,N):- N1 is N0+1, length(Xs,N1,N). by Neng-Fa Zhou

  32. Example: reverse reverse([],[]). reverse([X|Xs],Zs):- reverse(Xs,Ys), append(Ys,[X],Zs). reverse(Xs,Ys):- reverse(Xs,[],Ys). reverse([],Ys,Ys). reverse([X|Xs],Ys0,Ys):- reverse(Xs,[X|Ys0],Ys). by Neng-Fa Zhou

  33. Example: count count(void,0). count(t(N,L,R),N):- count(L,N1), count(R,N2), N is N1+N2+1. count(T,N):- count(T,0,N). count(void,N,N). count(t(N,L,R),N0,N):- N1 is N0+1, count(L,N1,N2), count(R,N2,N). by Neng-Fa Zhou

  34. Difference Lists leaves(void,[]). leaves(t(N,void,void),L):-!, L=[N]. leaves(t(N,Left,Right),L):- leaves(Left,L1), leaves(Right,L2), append(L1,L2,L). leaves(T,L):- leaves(T,L,[]). leaves(void,L,L). leaves(t(N,void,void),L,LR):-!,L=[N|LR]. leaves(t(N,Left,Right),L,LR):- leaves(Left,L,L1), leaves(Right,L1,LR). L-[] equals L L-L equals [] L-LR equals (L-L1) + (L1-LR) by Neng-Fa Zhou

  35. Exercises • Define the following predicates and convert them into tail-recursive ones. • merge(L1,L2,L) • L is the merge of two sorted lists L1 and L2. L must be sorted too. • preorder(T,L) • L is the list of nodes in the binary tree T in pre-order. by Neng-Fa Zhou

  36. Backtracking and Its Control • For a goal and a program, Prolog constructs and explores the search tree (SLD-tree) through backtracking, i.e., top-down and from left to right. • Prolog provides an operator '!' (called cut) for pruning useless branches. by Neng-Fa Zhou

  37. The Meaning of Backtracking • Gi: (A1,A2,...,An) • H:-B1,...,Bm • A1q=H1q • Gi+1: (B1,...,Bm,A2,...,An)q • When Gi+1 fails, • undo the bindings of the variables in Gi • apply an alternative clause to A1 • A1 fails if no such a clause is available, which will cause Gi to fail. by Neng-Fa Zhou

  38. BacktrackingExample p(X) p(a). p(b). p(c). X=a X=b X=c [] [] [] by Neng-Fa Zhou

  39. BacktrackingExample p(a). q(1). p(b). q(2) p(c). p(X),q(Y) X=b X=a X=c q(Y) q(Y) q(Y) Y=1 Y=2 Y=1 Y=2 Y=1 Y=2 [] [] [] [] [] [] by Neng-Fa Zhou

  40. BacktrackingExample-- member • Can be used in two different ways • test whether the element is a member of the list • member(b,[a,b,c]) • pickup elements from the list one by one • member(X,[a,b,c]) member(X,[X|Xs]). member(X,[_|Xs]):-member(X,Xs). by Neng-Fa Zhou

  41. BacktrackingExample -- select • select(Xs,X,Rest) • X is an element in Xs and Rest is Xs but without X. select([X|Xs],X,Xs). select([X|Xs],Y,[X|Xs1]):-select(Xs,Y,Xs1). by Neng-Fa Zhou

  42. BacktrackingExample -- permutation • permutation(Xs,Ys) • Ys is a permutation of Xs permutation([],[]). permutation(Xs,[X|Ys]):- select(Xs,X,Xs1), permutation(Xs1,Ys). by Neng-Fa Zhou

  43. Exercises • Define the following predicates • subset(Xs,Ys) • Xs is a subset of Ys. Assume Xs and Ys do not contain duplicates. • intersect(Xs,Ys,Zs) • Zs is the intersect of Xs and Ys. by Neng-Fa Zhou

  44. BacktrackingExample -- permutation sort • sort(Xs,SortedXs) • SortedXs is Xs sorted in ascending order sort(Xs,SortedXs):- permutation(Xs,SortedXs), %generator sorted(SortedXs). %test sorted([]). sorted([X]). sorted([X1,X2|Xs]):- X1=<X2, sorted([X2|Xs]). by Neng-Fa Zhou

  45. BacktrackingN-queens problem • Find a layout for the N queens on an N by N chessboard such that no queens attack each other. Two queens attack each other if they are in the same row, the same column, or the same diagonal. Xi: the number of the row for the ith queen. for each two variables Xi and Xj Xi =\= Xj %not same row Xi=\=Xj+(j-i) %not same diagonal Xi=\=Xj-(j-i) by Neng-Fa Zhou

  46. N-queens problem (cont.) queens(N,Qs):- range(1,N,Ns), permutation(Ns,Qs), notAttack(Qs). range(N0,N,Ns):- N0=:=N,Ns=[N]. range(N0,N,Ns):- N0<N, Ns=[N0|Ns1], N1 is N0+1, range(N1,N,Ns1). notAttack([]). notAttack([X|Xs]):- notAttack(X,Xs,1), notAttack(Xs). notAttack(X,[],K). notAttack(X,[Y|Ys],K):- X=\=Y, X=\=Y+K, X=\=Y-K, K1 is K+1, notAttack(X,Ys,K1). by Neng-Fa Zhou

  47. N-queens problem (cont.)Test partial solutions ASA queens(N,Qs):- range(1,N,Ns), queens(Ns,[],Qs). queens([],Qs,Qs). queens(Xs,Qs0,Qs):- select(Xs,X,Xs1), notAttack(X,Qs0,1), queens(Xs1,[X|Qs0],Qs). by Neng-Fa Zhou

  48. Exercises • 1.Write a program to solve the following puzzle. • Given eight letters S,E, N, D, M, O, R and Y, one is required to assign a digit between 0 and 9 to each letter such that all the letters have different values and the equation SEND + MORE = MONEY is satisfied. • 2. Write a program to color the map of Western Europe. The map is given in the following. map(west_europe, [ region(portugal,P,[E]), region(spain,E,[F,P]), region(france,F,[E,I,S,B,WG,L]), region(belgium,B,[F,H,L,WG]), region(holland,H,[B,WG]), region(west_germany,WG,[F,A,S,H,B,L]), region(luxembourg,L,[F,B,WG]), region(italy,I,[F,A,S]), region(switzerland,S,[F,I,A,WG]), region(austria,A,[I,S,WG])]). by Neng-Fa Zhou

  49. Controlling Backtracking • Use cut to express if-then-else intersect([],Ys,[]). intersect([X|Xs],Ys,[X|Zs]):- member(X,Ys), intersect(Xs,Ys,Zs). intersect([X|Xs],Ys,Zs):- not member(X,Ys), intersect(Xs,Ys,Zs). intersect([],Ys,[]). intersect([X|Xs],Ys,[X|Zs]):- member(X,Ys),!, intersect(Xs,Ys,Zs). intersect([X|Xs],Ys,Zs):- not member(X,Ys), intersect(Xs,Ys,Zs). by Neng-Fa Zhou

  50. Controlling Backtracking (Cont.) • Use cut to express negation-as-failure not(Call):- call(Call),!, fail. not(Call). by Neng-Fa Zhou

More Related