350 likes | 549 Views
Inferring Disjunctive Postconditions. Corneliu Popeea and Wei-Ngan Chin School of Computing National University of Singapore. - ASIAN 2006 -. Motivation: Infer Precise Invariants. x:=0; while (x<len(A)) { if (…) { /* check if a new minimum has been found */ m:=x; }
E N D
Inferring Disjunctive Postconditions Corneliu Popeea and Wei-Ngan Chin School of Computing National University of Singapore - ASIAN 2006 -
Motivation: Infer Precise Invariants x:=0; while (x<len(A)) { if (…) { /* check if a new minimum has been found */ m:=x; } x:=x+1; } return A[m]; /* assert (0·m < len(A)) */ Compute an invariant at l1 over inputs (x,m,s) + outputs (x',m') (x,m,s,x',m') :- (x¸s Æ x'=x Æ m'=m) Ç (x < s Æ x'=s Æ m'=m) Ç (x < s Æ x'=s Æ x·m'< x') /* l1 */ /* what invariant at l1 proves assertion ?? */
Related: Numerical Abstract Domains Conjunctive Num-Abs-Domains: • Interval domain: §x · c [Cousot et al: ISOP’76] • Polyhedron domain: a1x1 + .. + anxn· c [Cousot et al: POPL’78] Disjunctive Num-Abs-Domains: • Powerset extension of an abstract domain [Cousot et al: POPL’79] • Powerset widening [Bagnara et al: VMCAI'04] [Gulavani et al: TACAS'06] • Hulling based on Hausdorff distance [Sankaranarayanan et al: SAS'06]
Overview • Constraint abstraction: collected from the method body. • Conjunctive fixpoint analysis. • Disjunctive fixpoint analysis. • Experimental results.
Constraint Abstraction • A method is translated to a constraint abstraction: void mnD (ref int x) { if x>0 { x:=x-1; mnD(x); } else () } • Next step: derive the lfp of this rec-constraint. mnD(x,x') = (x·0 Æ x'=x)Ç (x>0 Æ9x1.(x1=x-1Æ(mnD(x,x')))) - substitution from formal to actual args= [x!x1, x'!x']
Abstract Domain of Polyhedra[Cousot-Halbwachs: POPL'78] Defined as a lattice: <L, v, ?, >, t, u> • abstract element: conj. of linear inequalities (convex polyhedron) • partial order: F1vF2 = F1)F2 • bottom: ? = False • top: > = True • lub: F1 t F2 = hull(F1 Ç F2) • glb: F1 u F2 = F1 Æ F2 CAbst is a monotone function f: L -> L8F1,F22L: if F1vF2 then f(F1)vf(F2)
Fixpoint Analysis mnD() = (x·0 Æ x'=x) Ç (x>0 Æ9x1.(x1=x-1 Æ)) - relation over inputs (x) + outputs (x') • mnD0 = False • mnDi+1 = mnD(mnDi) • Ascending chain:False v mnD1v mnD2v .. v mnDiv ..
Conjunctive Fixpoint Analysis mnD1 = mnD(False) = (x·0Æx'=x) mnD2 = mnD(mnD1) = (x·0 Æ x'=x) Ç (x>0 Æ9x1.(x1=x-1 Æ(mnD1))) = hull((x·0Æx'=x) Ç (x=1Æx'=0)) = (x-1·x'·x Æ x'·0) mnD3 = mnD(mnD2) = (x-2·x'·x Æ x'·0) • Lattice of polyhedra has infinite height: use widening operator. mnDW2 = widen(mnD2,mnD3) = (x'·x Æ x'·0) • A post-fixpoint has been found when: mnD(mnDi) ) mnDi mnDW3 = mnD(mnDW2) = (x'·x Æ x'·0)
Conjunctive Analysis • mnDCONJ = (x'·x Æ x'·0) • mnDDISJ = (x·0Æx'=x) Ç (x>0Æx'=0) mnD1 = (x·0Æx'=x) mnD2 = (x·0Æx'=x) Ç (x=1Æx'=0) mnD3 = (x·0Æx'=x) Ç (x=1Æx'=0) Ç (x=2Æx'=0) ... More precision? Disjunctive Analysis
Powerset Abstract Domain of Polyhedra Defined as a semi-lattice: <L, v, ?, >, t> • abstract element: m-bounded disj of convex poly. • partial order: F1vF2 = F1)F2 • bottom: ? = False • top: > = True • lub: F1 t F2 = hullm(F1 Ç F2)
Disjunctive Fixpoint Analysis • Key Problems: • Maintain precision at reasonable cost. • Ensuring termination of analysis (with widening operator). • Main contributions: • Use disjunct affinity to lift both the hulling and widening operators from the conjunctive to the disjunctive domain. • Precise and fairly-efficient disjunctive polyhedra analysis.
Hullm: Selective Hulling • Given F= Çni=1i (where i are conjunctive formulae) • find the most affine disjuncts for hulling (according to some affinity measure) • ensure the number of disjuncts does not exceed m
1 2 3 4 Geometrical Intuition for Affinity • A good affinity-measure: • should be able to quantify how precisely (1Ç 2) can be approximated by hull (the convex-hull result) Compare 1Ç2 with hull Identify perfect match (100% affinity)
1 2 3 4 Affinity Measures (1) • Based on Hausdorff distance [SAS'06]: h-heur(P,Q) = maxx2 P{ miny 2 Q {|x - y|}} • Not able to distinguish among (1,2) and (3,4) (they have similar Haus-distances). • Less appropriate for a relational domain.
1 2 3 4 Affinity Measures (2) • Planar-Affinity: p-heur(1,2) = mset = { c 2 (1[2) | hull) c} • Detects that (3,4) has higher affinity. • Suited for relational domains.
Example: Hullm and Planar-Affinity • mnD3 = (x·0Æx'=x) Ç (x=1Æx'=0) Ç (x=2Æx'=0) (F1 Ç F2 Ç F3) • Affinhull matrix (F1,F2,F3) • hull2(F1ÇF2ÇF3)= (F1 Ç hull(F2ÇF3)) = (x·0 Æ x'=x) Ç (1·x·2 Æ x'=0)
Overview • Collect a constraint abstraction corresponding to the method body. • Background: Conjunctive fixpoint analysis. • Disjunctive fixpoint analysis. • find related disjuncts for hulling • powerset widening operator • Experimental results.
Powerset Widening Given F1= Çdi and F2 = Çej (di, ej are conjunctive formulae): • find pairs of related disjuncts di and ej • compute widening on the conjunctive domain: fi = (direj) • result is: F1 rm F2 = Çfi Related work: • Bagnara et al [VMCAI'04]: propose to use a connector to combine elements in F2 (e.g. each connected element will approximate some element from F1) • Gulavani et al [TACAS'06]: specify a recipe for a connector; but rely on the ability to find one minimal element from a set of polyhedra
e1 d1 d2 e2 Powerset Widening - rm • Our solution: • find pairs of related disjuncts based on planar-affinity • Planar-affinity is a good indicator for the number of conjuncts preserved in the result of widening. (d1Çd2)rm (e1Çe2) = (d1re1) Ç (d2re2)
Summary: Disjunctive Fixpoint Analysis mnD1 = mnD(False) = (x·0Æx'=x) mnD2 = mnD(mnD1) = hull2((x·0Æx'=x) Ç (x=1Æx'=0)) = (x·0Æx'=x) Ç (x=1Æx'=0) mnD3 = mnD(mnD2) = hull2((x·0Æx'=x) Ç (x=1Æx'=0) Ç (x=2Æx'=0)) = (x·0Æx'=x) Ç (1·x·2Æx'=0) • Lattice has infinite height: use widening operator. mnDW2 = mnD2 rm mnD3 = (x·0 Æ x'=x) Ç (x>0 Æ x'=0) • A post-fixpoint has been found when: mnD(mnDi) ) mnDi mnDW3 = mnD(mnDW2) = (x·0 Æ x'=x) Ç (x>0 Æ x'=0)
Implementation • Haskell + Omega library [Pugh et al] • Automate disjunctive postcondition inference. • Does it give more precise results? • Benchmarks: numerical programs written in C-like language.
Experimental Results • Infer postconditions with different values for m. • Most precise POST: m=2 (binary search, bubble sort, init array) m=3 (queens, quick sort, LU, Linpack) m=4 (SOR) m=5 (merge sort)
Experimental Results (II) • Array bound checks elimination. • Programs proved as safe:m=2 (bubble sort, init array)m=4 (merge sort, SOR) • Planar-Affinity proves redundant more checks than the Hausdorff-based affinity. • Disj-Analysis is useful: as m increases, no. of checks not proven decreases gradually.
Summary • Disjunctive polyhedra analysis via affinity. • selective hulling • powerset widening • Implementation of a modular static analyzer based on disjunctive polyhedra domain. • potential for trade-off between precision and analysis cost
x' x x'=x x' x x'=x x-1=x' hull(1Ç2) Convex-Hull Operator 1 = (x·0Æx'=x) 2 = (x=1Æx'=0) hull(1Ç2) = (x-1·x'·x Æ x'·0)
x' x' x' x x x x'·x x'·x widen(1,2) x-1·x' x'·x x-2·x' Widening Operator 1= (x-1·x'·x Æ x'·0) 2= (x-2·x'·x Æ x'·0) widen(1,2) = (x'·x Æ x'·0)
Quick Sort Example (II) • Conjunctive analysis: discovers a lower bound for result: (res ¸ n) • 3-Disjunctive analysis:result is a valid index: (0 · res < s)
References • [Cousot-Halbwachs:POPL'78] Automatic discovery of linear restraints among variables of a program. • [Bagnara et al: VMCAI'04] Widening Operators for Powerset Domains. • [Gulavani-Rajamani: TACAS'06] Counterexample Driven Refinement for Abstract Interpretation. • [Sankaranarayanan et al:SAS'06] Static Analysis in Disjunctive Numerical Domains.
Constraint Abstraction • From a method, the analysis generates a constraint-abstraction: meth => • Constraint language: ::= ÆjÇj9x.j mn(x*) j s (constraint) s ::= a1x1 + .. + anxn· a (linear inequality) a 2Z, x 2 Var, mn 2 Meth-Name
Hullm: Selective Hulling • Given F= Çni=1i (where i are conjunctive formulae) • find the most affine disjuncts for hulling (according to some affinity measure) • ensure the number of disjuncts does not exceed m hullm (F) = if (n · m) then Felse hullm(F - {i,j} [ hull(i,j))such that 8 a,b21..n: affinhull(i,j) ¸ affinhull(a,b)
Affinity for Hulling • Compute: • hull operation: hull = hull(1Ç2) • approx. due to hull: approx = hullÆ:(1Ç2) • affinhull(1,2) = if (approx=False) then 100 else if (hull=True) then 0 else heur(1,2)
Example: rm and Planar-Affinity • mnD3 = (x·0 Æ x'=x) Ç (1·x·2 Æ x'=0) (d1Çd2) • mnD4 = (x·0 Æ x'=x) Ç (1·x·3 Æ x'=0) (e1Çe2) • Affinwiden matrix • mnD3 rm mnD4 = (d1r e1) Ç (d2r e2) = (x·0 Æ x'=x) Ç (x>0 Æ x'=0)
Loops are Analyzed as Methods • Transform loops into tail-recursive functions. • The proposed fixpoint analysis works both for loops and for general recursion. • Nested loops • Mutually-recursive methods