1 / 37

Deploying IP Video Surveillance over Avaya Networking Infrastructure

Deploying IP Video Surveillance over Avaya Networking Infrastructure. Carl DeVincentis, Sr. Solutions Architect, Avaya Darren Giacomini , Sr. Network Architect, PELCO . @ carldevincentis. Agenda. Video Surveillance and Network Considerations Video Surveillance using PIM-SM – A Quick Review

kiril
Download Presentation

Deploying IP Video Surveillance over Avaya Networking Infrastructure

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Deploying IP Video Surveillance over Avaya Networking Infrastructure Carl DeVincentis, Sr. Solutions Architect, Avaya Darren Giacomini, Sr. Network Architect, PELCO @carldevincentis

  2. Agenda • Video Surveillance and Network Considerations • Video Surveillance using PIM-SM – A Quick Review • Video Surveillance over Avaya With SPBM (IEEE802.1aq) • Multicast over SPB a Look Under the Covers • Pelco Endura over SPB Lab Testing • Pelco Presentation

  3. IP Video Surveillance and Network Considerations

  4. Network Considerations • Transport of multicast video should be as efficient as possible • Network devices can be manually configured or can utilize DHCP and UPnP • Switch and network redundancy and fault tolerance should be implemented wherever possible • Multilink Trunks should be sized according to expected traffic load • Especially important when overlaying a video surveillance system on an existing data infrastructure

  5. Multicast in a Traditional Data Network • The sender to receiver ratio tends to be small • All receivers join and leave multicast groups as needed • Use of SM vs. DM multicast protocols is really dictated by individual topology and application Senders Receivers

  6. Multicast in a Video Surveillance Network • Basically the inverse of a traditional multicast network • Greater sender to receiver ratio • Every camera or encoder is a multicast source • Usually a relatively small number of fixed monitoring stations and storage devices Senders Receivers

  7. Multicast VideoLayer 2 or Layer 3? • Layer 2 • Switches must be able to scale to accommodate IGMP entries • May limit the number of transmitting devices you can have • Need for loop detection and prevention (i.e. STP) • MSTP introduces multiple spanning trees with multiple root bridges – complexity • Really not an option except in modest deployments • Layer 3 • Multicast must be enabled on all L3 core switches • In the case of PIM, a unicast routing protocol must be deployed • Hop count may be an issue

  8. Video Surveillance using PIM-SM – A Quick Review

  9. Workstation/ System Manager Video Surveillance using PIM-SM(A Quick Review) • IGMP Snooping should be configured on all edge switches • All routers must be configured for PIM • An IGP must be configured (e.g. RIP, OSPF) • RP(s) must be aware of all possible multicast groups • UPnP well known MC group address – 239.255.255.250 DR PIM Router L2 Switch RP DR DR DR DR

  10. Cameras SourceLive Video • Whether through the use of a Bootstrap router or static RP configuration all DRs know which RP services which groups • When a camera first starts sending traffic the DR creates a (S,G) entry and sends that traffic to the RP encapsulated in Register packets (unicast) • This path is based on the IGP routing table Workstation/ System Manager DR PIM Router RP L2 Switch DR DR DR DR

  11. Pulling Live Video • The Workstation sends an IGMP Join message for a specific group (camera) • Upon receiving the Join message the DR creates a (*,G) entry and forwards it toward the RP • This path is based on the IGP routing table Workstation/ System Manager DR PIM Router RP L2 Switch DR DR DR DR

  12. Pulling Live VideoSetting up the RP-Tree • The RP receives the encapsulated Register packets, de-encapsulates them and forwards them along the RPT (or Shared Tree) to the receiver • A tree with the RP at its root Workstation/ System Manager DR PIM Router RP L2 Switch DR DR DR DR

  13. Pulling Live VideoSetting up the SP-Tree • Once a data rate threshold has been crossed the RP creates a (S,G) entry and the receiver’s DR sends a join/prune back along the shortest path to the sender setting up the SPT (red) • The receiver’s DR now receives native MC packets along the SPT (green) • Notice the number of router hops • This could introduce unacceptable latency Workstation/ System Manager DR PIM Router RP L2 Switch DR DR DR DR

  14. Video Surveillance over Avayawith SPBM (IEEE802.1aq)

  15. Video Surveillance over Avayawith SPBM (IEEE802.1aq) • All of Avaya’s best practices still apply • We can still take advantage of Avaya’s fault tolerance and redundancy • Switch Clustering • MLT/SMLT/DSMLT/RSMLT • Dual SFs and HA • The VSP9000 supports SPBM but not MC services today (3.4) Workstation/ System Manager ERS8800 ERS4800 (SPBM) (or L2 Switch) IST IST

  16. SPBM Configuration forNative Multicast with L3VSNs • Configure VRFs on each BEB – Traffic on these VRFs stay only on these VRFs • Data separation • Security • Configure ISIS and SPBM • Enable IP and MC on each VRF • IP required only for unicast traffic Workstation/ System Manager BEB BCB BCB ERS8800 BCB BCB ERS4800 (SPBM) (or L2 Switch) BCB BCB IST IST BEB BEB BEB BEB

  17. SPBM Configuration forNative Multicast • IGMP Snooping is enabled on all L2 edge switches and IGMP on each BEB UNI supporting MC • BEB becomes Querier • No changes to IGMP itself • Query/Report Timers • Filters • No service provisioning required on BCBs Workstation/ System Manager BEB BCB BCB ERS8800 ERS4800 (SPBM) (or L2 Switch) BCB BCB BCB BCB IST IST BEB BEB BEB BEB

  18. Multicast over SPB a Look under the Covers

  19. Stream Announcement – No Receiver Present Receiver ISIS-SPBM Module Sender ISIS-SPBM Module Receiver MC Module Sender MC Module New Stream Create Local Sender Record ADD Local StreamInfo Allocate DataISID ADD StreamInfo TLV ADD DataISID TLV(TX) Update LSDB ADD Remote StreamInfo

  20. First Receiver Joins –Remote Sender(s) Receiver ISIS-SPBM Module Sender ISIS-SPBM Module Receiver MC Module Sender MC Module Receiver Join QUERY Remote Streams Check LSDB Remote Stream List Create Local Records ADD DataISID TLVs(RX) JoinStream(s)

  21. PelcoEndura over SPB Lab Testing

  22. Pelco Endura and MCoSPB • This test bed was built in Billerica, MA specifically to test the PelcoEndura system using native MC over SPBM – No PIM • In the following screenshots the workstation is pulling video from all four cameras

  23. Example - SPB Multicast Summary 86-12:5#show isisspb-mcast-summary ******************************************************************************* Command Execution Time: THU FEB 14 14:48:08 2013 Eastern ******************************************************************************* ================================================================================ SPB Multicast - Summary ================================================================================ SCOPE SOURCE GROUP DATA LSP HOST I-SID ADDRESS ADDRESS I-SID BVID FRAG NAME -------------------------------------------------------------------------------- 1000 192.168.121.10 239.255.255.250 16000002 41 0x0 86-11 1000 192.168.121.200 239.168.121.200 16000643 40 0x0 86-11 1000 192.168.121.199 239.168.121.199 16000897 40 0x0 86-11 1000 192.168.110.20 239.255.255.250 16000001 40 0x0 86-12 1000 192.168.110.30 239.255.255.250 16000246 40 0x0 86-12 1000 192.168.123.10 239.255.255.250 16002085 40 0x0 86-13 1000 192.168.123.199 239.168.123.199 16002927 40 0x0 86-13 1000 192.168.123.199 239.255.255.250 16002935 40 0x0 86-13 1000 192.168.123.200 239.168.123.200 16002926 41 0x0 86-13 1000 192.168.123.200 239.255.255.250 16002934 41 0x0 86-13 1000 192.168.110.20 239.255.255.250 16000001 41 0x0 86-14 1000 192.168.110.30 239.255.255.250 16000246 41 0x0 86-14 -------------------------------------------------------------------------------- 12 out of 12 Total Num of Entries • The SPB Multicast Summary shows the available MC groups not necessarily the active multicast streams

  24. Example – ISIS LSDB • This is a portion of the ISIS LSDB showing TLV 185 (Multicast) being advertised from switch 86-11 86-11:5#show isislsdbtlv 185 detail ******************************************************************************* Command Execution Time: THU FEB 14 12:15:10 2013 UTC ******************************************************************************* ================================================================================ ISIS LSDB (DETAIL) ================================================================================ -------------------------------------------------------------------------------- Level-1 LspID: 0000.0beb.0011.00-00 SeqNum: 0x0000118c Lifetime: 1132 Chksum: 0xa731 PDU Length: 522 Host_name: 86-11 Attributes: IS-Type 1 TLV:185 SPBM IPVPN : VSN ISID:1000 BVID :41 Metric:0 IP Source Address: 192.168.121.10 Group Address : 239.255.255.250 Data ISID : 16000002 TX : 1 VSN ISID:1000 BVID :40 Metric:0 IP Source Address: 192.168.121.200 Group Address : 239.168.121.200 Data ISID : 16000643 TX : 1 Metric:0 IP Source Address: 192.168.121.199 Group Address : 239.168.121.199 Data ISID : 16000897 TX : 1

  25. Example – Multicast FIB VSP9K-2:1#show isisspbm multicast-fib ================================================================================ SPBM MULTICAST FIB ENTRY INFO ================================================================================ MCAST DA ISID BVLAN SYSID HOST-NAME OUTGOING-INTERFACES -------------------------------------------------------------------------------- 03:00:91:00:00:96 150 40 0000.0bcb.0091 VSP9K_1 03:00:92:00:00:96 150 41 0000.0bcb.0092 VSP9K-2 MLT-1 03:00:11:c6:36:5f 12990047 40 0000.0beb.0011 86-11 11/2 03:00:11:f4:26:83 16000643 40 0000.0beb.0011 86-11 11/2 03:00:11:f4:27:81 16000897 40 0000.0beb.0011 86-11 11/2 03:00:11:f4:27:8b 16000907 40 0000.0beb.0011 86-11 11/2 03:00:11:00:0b:ba 3002 41 0000.0beb.0011 86-11 11/2 03:00:11:f4:24:02 16000002 41 0000.0beb.0011 86-11 11/2 03:00:11:f4:27:8a 16000906 41 0000.0beb.0011 86-11 11/2 03:00:12:00:0b:ba 3002 40 0000.0beb.0012 86-12 5/2 03:00:12:c6:36:5f 12990047 40 0000.0beb.0012 86-12 5/2 03:00:12:f4:24:01 16000001 40 0000.0beb.0012 86-12 5/2 03:00:12:f4:24:f6 16000246 40 0000.0beb.0012 86-12 5/2 03:00:13:c6:36:5f 12990047 40 0000.0beb.0013 86-13 11/2,MLT-1 03:00:13:f4:2c:25 16002085 40 0000.0beb.0013 86-13 11/2,MLT-1 03:00:13:f4:2f:6f 16002927 40 0000.0beb.0013 86-13 11/2,MLT-1 03:00:13:f4:2f:79 16002937 40 0000.0beb.0013 86-13 11/2,MLT-1 03:00:13:00:0b:ba 3002 41 0000.0beb.0013 86-13 11/2 03:00:13:f4:2f:6e 16002926 41 0000.0beb.0013 86-13 11/2 03:00:13:f4:2f:78 16002936 41 0000.0beb.0013 86-13 11/2 03:00:14:00:0b:ba 3002 41 0000.0beb.0014 86-14 5/2 03:00:14:c6:36:5f 12990047 41 0000.0beb.0014 86-14 5/2 03:00:14:f4:24:01 16000001 41 0000.0beb.0014 86-14 5/2 03:00:14:f4:24:f6 16000246 41 0000.0beb.0014 86-14 5/2 -------------------------------------------------------------------------------- Total number of SPBM MULTICAST FIB entries 24 --------------------------------------------------------------------------------

  26. Example – Multicast Route 86-13:5#show isisspbmip-multicast-route vrfmcast detail ******************************************************************************* Command Execution Time: THU FEB 14 17:43:21 2013 UTC ******************************************************************************* =============================================================================================================== SPBM IP-MULTICAST ROUTE INFO - VRF NAME : mcast, VSN-ISID : 1000 =============================================================================================================== Source Group Data ISID BVLAN NNI Rcvrs UNI Rcvrs Source-BEB --------------------------------------------------------------------------------------------------------------- 192.168.121.199 239.168.121.199 16000897 40 - - 86-11 192.168.121.200 239.168.121.200 16000643 40 - - 86-11 192.168.123.199 239.168.123.199 16002927 40 4/2 V123:4/20 86-13 192.168.123.200 239.168.123.200 16002926 41 4/2 V123:4/20 86-13 192.168.110.20 239.255.255.250 16000001 40 - V123:4/20 86-12 192.168.110.20 239.255.255.250 16000001 41 4/1 V123:4/20 86-14 192.168.110.30 239.255.255.250 16000246 40 - V123:4/20 86-12 192.168.110.30 239.255.255.250 16000246 41 4/1 V123:4/20 86-14 192.168.121.10 239.255.255.250 16000002 41 4/2 V123:4/20 86-11 192.168.123.10 239.255.255.250 16002085 40 4/1,4/2 V123:4/20 86-13 --------------------------------------------------------------------------------------------------------------- Total Number of SPBM IP MULTICAST ROUTE Entries: 10 ---------------------------------------------------------------------------------------------------------------

  27. Scalability Testing for Endura Utilizing SPB Darren Giacomini Sr. Network Architect Pelco

  28. Over 2000 Channels of MPEG4 and H.264 Video for Scalability Testing. • Stress testing to over 5000 Multicast entries for IGMP/PIM/SPB • Failover and Re-Convergence Testing for Multicast Video

  29. What is Different about Multicast Video • Multicast Sources are diversely distributed. • Multicast sources originate at the edge of the network. • When deploying PIM rule of thumb is – RP should be placed as close to the source as possible. • Poses a unique problem for a distributed edge sources.

  30. Video Surveillance using a Layer 2 Approach • IGMP Snooping / Querier Processes are critical to conserve resources. • Caution must be taken not to exceed IGMP tables capacity • Failure of the configuration or exceeding the capacity can result in blocking or massive flooding.

  31. When Multicast Flooding Occurs Things Go From Bad to Worse Quickly. • To the right is a portion of a 45 second WireShark capture Taken at a Nuclear Facility. • The 45 second capture was taken during a flooding state of 300 cameras while Spanning-Tree Re-converged. • Some Video streams took up to 45 minutes to return. • The Nuclear Plant accepted this as normal. GigabitEthernet0/2 is up, line protocol is up (connected) Hardware is Gigabit Ethernet, address is 3037.a660.eb82 (bia 3037.a660.eb82) Description: CAMERA 132 MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec, reliability 255/255, txload 247/255, rxload 2/255

  32. Video Surveillance using Layer 3 PIM SM • RP should be configured as close to the source as possible. • First Video Frame is Encapsulated in the PIM register message and sent to the RP. • RP will forward the first frame of video down the (*,G) path. • Subsequent frames will follow shortest path after SPT-Switchover

  33. Registration Process is Very CPU Intensive

  34. Moving the RP Closer to the SourceAuto RP • All Layer 3 PIM devices learn the RP addresses. • Two Dense mode groups are used for announcement and discovery. • 224.0.1.39 Announcement • 224.0.1.40 Discovery • Mapping Agents store group to RP mappings. • Allows for Multiple RPs and Load balancing.

  35. Moving the RP Closer to the SourceAnycast RP

  36. Benefits of SPB Multicast Video • No need for complicated configurations to place RP close to distributed multicast sources. • Reduced Latency for Camera Population. • Extremely Fast Re-Convergence. • Unmatched Scalability. • No need to Make configuration Changes to SPB once it is deployed.

  37. @carldevincentis

More Related