330 likes | 480 Views
The New Wide Band Equipment for the URAN Interferometers. A.S. Belov, A.S. Ivanov, A.B. Lozins'kyy, S.L. Rashkovskiy, V.A. Shepelyev. 9-th Gamow Summer School “Astronomy and beyond. Radioastronomy” 17-23 August, 2009, Odessa, Ukraine. The network URAN. UV plane coverage.
E N D
The New Wide Band Equipment for the URAN Interferometers A.S. Belov, A.S. Ivanov, A.B. Lozins'kyy, S.L. Rashkovskiy, V.A. Shepelyev 9-th Gamow Summer School “Astronomy and beyond. Radioastronomy” 17-23 August, 2009, Odessa, Ukraine
UV plane coverage URAN – 1,2,3,4 with UTR-2 at the frequencies 16.7, 20, and 25 MHz
3С134 2700 MHz VLA 20 MHz URAN
Radio galaxy 3С111 325 MHz 55 ˝ WENS 25MHz 15˝ URAN 1.4 GHz 45 ˝ VLA (NVSS) 1.4 GHz 10˝ VLA
Quasar 3С154 VLA 1.4 GHz 4˝ x 9˝ + URAN isophotes URAN grayscale
Initial model 25 MHz URAN model Quasar 3С254 MERLIN 1420 MHz 0".2
Synchrotron self-absorption Interstellar scattering Shishov, V.I. Astronomy Reports, V. 45, 2001 p0.75 для b=90, ν =25МГц
URAN-4 Increasing of the UR AN sensitivity is the necessary condition for the successful prolongation of the study.
Radio galaxy 3С280 S> 100 Jy at 20 MHz. VLA map at 1400 MHz with angular resolution 1”.5
ε=180º ε=150º ε=90º • The enlargement of the antennas effective area is cost-intensive and it is impossible now. • An alternative way is a broadening of the received band and/or increasing of the coherent integration time to boost the radiometric gain. • At the decameter wavelengths the coherent integration time is significantly limited by the effect of the interplanetary and ionosphere plasma. • The expansion of the receiver band is complicated by artificial interferences and limited by dispersion properties of the medium. The expansion of the bandpass needs higher requirements to ADC and data storage devices. But nowadays the computer technology progress and analogue and digital circuitry development enable to resolve the said problems simply enough
4байта/1мкс 64Кбайт/~16мсек Приемник (4-х кан.) АЦП (4 кан.) Интерфейсный блок ПЭВМ fгет1 fгет2 1МГц 1сек Код времени синтезатор частоты (2-х кан.) Стандарт Частоты СЧВ-74 GPS приемник Съемный диск Синхрониз. 5МГц Блок-схема аппаратурного комплекса пункта УРАН
Вых.1 «АЦП» ЭП Вх. усил. 2-й УПЧ 1-й УПЧ 2-й ПФ 1-й ПФ ФВЧ См Вход Вых.2 «контроль» ЭП Рег. усиления UГет. Функциональная схема одного канала радиоприемного устройства
Синтезатор ADF4001 Микроконтроллер PIC16F84A Делитель частоты Делитель частоты 5МГц Фаз.-имп. детектор Индикатор Fвых Сигнал рассогласования ГУН MAX2605 Fвых Структурная схема синтезатора частоты
Аналог. входы ПЛМ (EMP3128A) Вход кода Усилит. 4канала (2AD8032) АЦП. 4канала (4AD9051) Регистры данных Строб АЦП Схема управления Строб данных Рег. усил. 1Гц 5МГц Функциональная схема блока АЦП
Буфер ЭВМ Буфер АЦП IDE ОЗУ-1 Коммутатор адресов Сч.Адр.Чт Сч.Адр.Зп ОЗУ-2 Схема управления Синхр. АЦП 1МГц 1сек Функциональная схема интерфейсного блока
ADC DIB
Radio galaxy 3С280 S> 100 Jy at 20 MHz. VLA map at 1400 MHz with angular resolution 1”.5
The END with new equipment URAN investigations will be continued
Array Main parameters of the URAN N-S arm of UTR-2URAN-1 URAN-2 URAN -3 URAN -4 Frequency range 16-25MHz Nom. of dipoles 1440 96 512 256 128 Dimensions (m) 53 х 788 238 х 28 238 х 118 238 х 58 238 х 28 Polarization linear two linear (cross dipoles) Aff. area m2 ~100000 ~5500 ~28000 ~14000 ~7000 Array beam 20х 27 3,5 х 30 3,5 х 7 3,5 х 15 3,5 х 30 Interferometer resolution (25MHz) 15 4 0,7 1
Quasar 3С216 S0= 70 Jy 2˝(0.6S0)and 20˝(0.4S0) Extended component will have 5 Jy at 100 MHz ~10 mJy/beam
25 arcsec 20 mJy/beam at 100 MHz 40 arcsec 5mJy/beam at 100 MHz 3C380 3С196