1 / 59

LR for Packing problems

LR for Packing problems. Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven. The Local-Ratio Technique: Basic definitions . Given a profit [penalty] vector p. Maximize[Minimize] p·x Subject to: feasibility constraints F(x) x is r-approximation if F(x) and p·x [] r · p·x*

kirk
Download Presentation

LR for Packing problems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LR forPacking problems Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven

  2. The Local-Ratio Technique: Basic definitions • Given a profit [penalty] vector p. • Maximize[Minimize]p·x • Subject to: feasibility constraints F(x) • x isr-approximationif F(x) and p·x []r·p·x* • An algorithm is r-approximationif for any p, F • it returns an r-approximation

  3. The Local-Ratio Theorem: • xis an r-approximation with respect to p1 • xis an r-approximation with respect to p- p1 •  • xis an r-approximation with respect to p • Proof: (For maximization) • p1 · x  r ×p1* • p2 · x  r ×p2* •  • p · x  r ×( p1*+ p2*) •  r ×(p1 + p2 )*

  4. Special case: Optimization is 1-approximation • xis an optimum with respect to p1 • xis an optimum with respect to p- p1 • xis an optimum with respect to p

  5. A Local-Ratio Schema for Maximization[Minimization] problems: • Algorithm r-ApproxMax[Min]( Set, p ) • If Set = Φ then returnΦ ; • If  I  Setp(I)  0 then returnr-ApproxMax( Set-{I}, p ) ; • [If I  Setp(I)=0 then return {I} r-ApproxMin( Set-{I}, p ) ;] • Define “good” p1 ; • REC = r-ApproxMax[Min]( S, p- p1) ; • If REC is not an r-approximation w.r.t. p1 then “fix it”; • return REC;

  6. Maximum Independent Set in Interval Graphs • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 • time • Maximize s.t.For each instance I: • For each time t:

  7. Maximum Independent Set in Interval Graphs: How to select P1 to get optimization? • P1=0 • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 Î • time • Let Î be an interval that ends first; • 1 if I in conflict with Î • For all intervals I define: p1(I) = • 0 else • For every feasible x: p1 ·x  1 • Every Î-maximal is optimal. • For every Î-maximal x: p1 ·x  1 • P1=1 • P1=0 • P1=0 • P1=0 • P1=1 • P1=0 • P1=1 • P1=1

  8. Maximum Independent Set in Interval Graphs: An Optimization Algorithm • P1=P(Î ) • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 Î • time • Algorithm MaxIS( S, p ) • If S = Φ then returnΦ ; • If ISp(I) 0 then returnMaxIS( S - {I}, p); • Let ÎS that ends first; • IS define: p1(I) = p(Î)  (I in conflict with Î) ; • IS = MaxIS( S, p- p1) ; • If IS is Î-maximal then returnIS else return IS {Î}; • P1=0 • P1=0 • P1=0 • P1=0 • P1=P(Î ) • P1=0 • P1=P(Î ) • P1=P(Î )

  9. Maximum Independent Set in Interval Graphs: Running Example • P(I5) = 3 -4 • P(I6) = 6 -4 -2 • P(I3) = 5 -5 • P(I2) = 3 -5 • P(I1) = 5 -5 • P(I4) = 9 -5 -4 • -4 • -5 • -2

  10. Bar-Noy, Guha, Naor and Schieber STOC 99: 1/2 LP • Berman, DasGupta, STOC 00: 1/2 • This Talk, STOC 00(Independent)      1/2 Single Machine Scheduling : • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 ????????????? • time • Maximize s.t.For each instance I: • For each time t: • For each activity A:

  11. Single Machine Scheduling: How to select P1 to get ½-approximation ? • P1=1 • P1=0 • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 Î • time • Let Î be an interval that ends first; • 1 if I in conflict with Î • For all intervals I define: p1(I) = • 0 else • For every feasible x: p1 ·x  2 • Every Î-maximal is 1/2-approximation • For every Î-maximal x: p1 ·x  1 • P1=0 • P1=1 • P1=0 • P1=0 • P1=0 • P1=0 • P1=0 • P1=0 • P1=1 • P1=0 • P1=1 • P1=0 • P1=0 • P1=1 • P1=1 • P1=1 • P1=1 • P1=1

  12. Single Machine Scheduling: The ½-approximation Algorithm • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 Î • time • Algorithm MaxIS( S, p ) • If S = Φ then returnΦ ; • If ISp(I) 0 then returnMaxIS( S - {I}, p); • Let ÎS that ends first; • IS define: p1(I) = p(Î)  (I in conflict with Î) ; • IS = MaxIS( S, p- p1) ; • If IS is Î-maximal then returnIS else return IS {Î};

  13. Albers, Arora, Khanna SODA 99: O(1) |Ai|=1* • Uma, Phillips, Wein SODA 00: 1/4 LP. • This Talk 1/3 for w  1/2 and 1/5 for w  1 Bandwidth Allocation • Activity9 • Activity8 • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 I w(I) • s(I) e(I) time • Maximize s.t.For each instance I: • For each time t: • For each activity A:

  14. Bandwidth Allocation • Activity 9 • Activity 8 • Activity 7 • Activity 6 • Activity 5 • Activity 4 • Activity 3 • Activity 2 • Activity 1 • time • Bandwidth • time

  15. Bandwidth Allocation for w 1/2 How to select P1 to get 1/3-approximation? • Activity9 • Activity8 Î • Activity7 • Activity6 • Activity5 • Activity4 • Activity3 • Activity2 • Activity1 I w(I) • s(I) e(I) time • 1if I in the same activity of Î • For all intervals I define: p1(I) = 2*w(I)if I in time conflict with Î • 0 else • For every feasible x: p1 ·x 3 • Every Î-maximal is 1/3-approximation • For every Î-maximal x: p1 ·x 1

  16. Bandwidth Allocation The 1/5-approximation for any w  1 • Activity9 • Activity8 w > ½ • Activity7 w > ½ w > ½ • Activity6 • Activity5 w > ½ • Activity4 • Activity3 w > ½ w > ½ • Activity2 • Activity1 w > ½w > ½ w > ½ • Algorithm: • GRAY = Find 1/2-approximation for gray (w>1/2) intervals; • COLORED = Find 1/3-approximation for colored intervals • Return the one with the larger profit • Analysis: • If GRAY*  40%OPT then GRAY 1/2(40%OPT)=20%OPT else • COLORED*  60%OPT thus COLORED 1/3(60%OPT)=20%OPT

  17. Single Machine Scheduling with Release and Deadlines • Activity 9 • Activity 8 • Activity 7 • Activity 6 • Activity 5 • Activity 4 • Activity 3 • Activity 2 • Activity 1 • time • Each job has a time window within which it can be processed.

  18. Single Machine Scheduling with Release and Deadlines • Activity 9 • Activity 8 • Activity 7 • Activity 6 • Activity 5 • Activity 4 • Activity 3 • Activity 2 • Activity 1

  19. Continuous Scheduling • { • Single Machine Scheduling (w=1) • Bar-Noy, Guha, Naor and Schieber STOC 99: 1/3 Non Combinatorial •   Berman, DasGupta STOC 00: 1/2·(1-) •   This Talk, STOC 00: (Independent) 1/2·(1-) • Bandwidth AllocationUma, Phillips, Wein SODA 00:       1/6 Noncombinatorial • This Talk, STOC 00 (Independent)       1/3 ·(1-) for w  1/2   1/5 ·(1-) for w  1 • w(I) •  d(I)  • s(I) e(I)

  20. Continuous Scheduling: Split and Round Profit (Loose additional (1-) factor) • If currant p(I1)   original p(I1) then delete I1 • else Split I2=(s2,e2] to I21=(s2, s1+d1] and I22=(s1+d1,e2] •  d(I1)  •  d(I2)  • I11 • I12 •  d(I1)  • I21 • I22 •  d(I2) 

  21. LP RoundingusingFractional Local Ratio Reuven Bar-Yehuda www.cs.technion.ac.il/~reuven

  22. General framework: Given a weight vector w. Minimize [Maximize]w·x Subject to: feasibility constraints F(x) x is anr-approximationif F(x) and w·x  rw·x* [w·x  rw·x* ] An algorithm is anr-approximation if for any w, F it returns an r-approximation

  23. 8 12 5 20 10 6 $1 $1 $4 $1 $1 $3 15 $2 $1 Min 5xBisli+8xTea+12xWater+10xBamba+20xShampoo+15xPopcorn+6xChocolate +$4xWaterShampoo+ • • • s.t. xShampoo + xWater + xWaterShampoo  1

  24. The generalized vertex cover problem Minimize w·x Subject to: xu + xv + xe 1  e={u,v} E x{0,1}|V|+|E|

  25. 2-Approx GVC(G,w) If E= return  If  e E w(e)=0 return {e}+GVC(G-e, w) If  v V w(v)=0 return {v}+GVC(G-E(v), w) Let e={u,v} E s.t = min {w(u), w(v), w(e)}>0.  if x{u,v,e} w1(x)= 0 else Notice:w1x  2w1x for Good(x) REC= GVC(G, w2= w-w1) Induction hyp is: w2REC 2w2x so if Good(REC):w1REC 2w1x we are done If REC-e is a cover thenREC=REC-e Return REC   

  26. “2 integral for the price of 1 fractional”: The local ratio technique for rounding Let xbe the the fractional solution Minimize w·x Subject to: xu + xv + xe 1  e=(u,v) E x[0,1]|V|+|E|

  27. “d integral for the price of ½(d+1) fractional”:2-2/(Δ+1)-Approx GVC(G,w)  If E= return  If  e E w(e)=0 return {e}+GVC(G-e, w) If  v V w(v)=0 return {v}+GVC(G-E(v)-v, w) Let v V s.txv is minimum and Let =min(w(i) : i  N[v]}  if i  N[v] w1(i)= 0 else Claim:w1x rΔw1x for Good(x) REC= GVC(G, w2= w-w1) Induction hyp is: w2RECrΔw2x so if Good(REC):w1RECrΔw1x we are done If REC is not a minimal cover then make REC minimal Return REC     Min xv      

  28. “d integral for the price of ½(d+1) fractional”:Claim: w1x rΔw1x for Good(x) IfMin xv ≥ ½ Thenx(N[v]) ≥ ½(d+1) Else x(N[v]) ≥ ½(d+1) Thusw1x ≥ ½(d+1)  But w1x d Hence: w1x/ w1x  2-2/(d+1)  2-2/(Δ +1) = rΔ      Min xv      

  29. A Generalized Local-Ratio Schema for Minimization [Maximization] problems: Letxbe any “fisible?” vector (e.g. an optimal solution) Algorithm r-ApproxMin [Max](Set, w) If Set =then return  ; If v  Set w(v) = 0 then return {v} r-ApproxMin(Set-{v},w ) ; [If  v  Setw(v) 0 then returnr-ApproxMax(Set-{v},w ) ;] Define “good” w1 ; i.e. Good(x):w1x  []rw1x REC = r-ApproxMin [Max](Set, w2) ; Induction hyp is: w2REC []rw2x so if Good(REC):w1REC []rw1x we are done, otherwise “fix it”; return REC’;

  30. The maximum independent set problem Maximize w·x Subject to: xu + xv≤ 1  e=(u,v) E x{0,1}|V|

  31. The maximum independent set problem “1 integral for the gain of r fractional”: Let xbe the the fractional solution Maximize w·x Subject to: xu + xv≤ 1  e=(u,v) E x[0,1]|V|

  32. Gain 1 integral, lose ½(d+1) fractional2/(Δ+1)-Approx IS(G,w)   If  v V w(v)  0 return IS(G-v, w) If E= return V Let v V s.txv is maximum and Let = w(v)  if i  N[v] w1(i)= 0 else Claim:w1x ≥rΔw1x for Good(x) REC= IS(G, w2= w-w1) Induction hyp is: w2REC≥rΔw2x so if Good(REC):w1REC≥rΔw1x we are done If REC+v is an independent set then REC=REC+v Return REC  Max xv   

  33. Gain 1 integral, lose ½(d+1) fractionalClaim: w1x ≥rΔw1x for Good(x) IfMax xv≤ ½ Then x(N[v]) ≤ ½(d+1) Else x (N[v]) ≤ ½(d+1) Thusw1x ≤½(d+1) But w1x ≥ Hens: w1x/ w1x ≥2/(d+1) ≥2/(Δ +1) = rΔ    Max xv   

  34. w1=  w1= 0 Activity9 Activity8 Activity7 Activity6 Activity5 Activity4 Activity3 Activity2 Activity1 w1=  w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1= 0 w1=  w1 = 0 w1=  w1= 0 w1= 0 w1=  w1=  w1=  w1=  w1=  time Î, and the weight decomposition: • Let Î be the interval which ends first. I in conflict with Î, • Define w1(I) = w2= w-w1 0 otherwise,

  35. 4-approximation for2 Dimentional Interval graphs

  36. 4-approximation for2 Dimentional Interval graphs

  37. 4-approximation for2 Dimentional Interval graphs

  38. 4-approximation for2 Dimentional Interval graphs

  39. 4-approximation for2 Dimentional Interval graphs

  40. 2t-approximation fort- Dimentional Interval graphs

  41. 2t-approximation for t-Interval Graphs Maximize w·x Subject to:  vCxv≤ 1  C Clique x{0,1}|V|

  42. 2t-approximation for t- Interval Graphsfinding x Maximize w·x Subject to:  vCxv≤ 1  CInterval Clique x[0,1]|V| e.g. x1+x4+x5≤ 1

  43. 2t-approximation for t- Interval Graphsfinding more relaxedx Maximize w·x Subject to:  vCxv≤ t  Ct-Interval Clique x[0,1]|V| e.g. x1+x3+x4+x5≤3

  44. Gain 1 integral, lose 2t fractional1/(2t)-Approx IS(G,w)   If  v V w(v)  0 return IS(G-v, w) If E= return V Let v V s.tx(N[v])is minimum and Let = w(v)  if i  N[v] w1(i)= 0 else Claim:w1x ≥ rtw1x for Good(x) REC= IS(G, w2= w-w1) Induction hyp is: w2REC≥rtw2x so if Good(REC):w1REC≥rtw1x we are done If REC+v is an independent set then REC=REC+v Return REC  Min x(N[v])2t   

  45. Gain 1 integral, lose 2t fractionalClaim: w1x ≥rtw1x for Good(x) We need to show that (next slide) x(N[v]) ≤ 2t Thusw1x ≤2t But w1x ≥1 Hence: w1x/ w1x ≥ /(2t) = rt    Min x(N[v])   

  46. Claim: v u N[v] xu≤ 2t Define a directed graph G(V,E) V = Set of t-splits E = {ij : A right endpoind of i “hits” interval j} Define xij = xi xj yi+ =  ij xij and yi- =  ji xji Thus yi+ txi i yi =i yi+ + i yi-  2tixi Thus i yi 2txi and therefore i  i-j xj 2t

  47. 6t-apx for t-Interval Graphs with demandsfinding x Maximize w·x Subject to:  vCdvxv≤ 1  CInterval Clique x[0,1]|V| e.g. d1x1+d4x4+d5x5≤ 1

  48. t-Interval Graphs with demands 6t = (fat)2t+(thin)4t (Assign zi=dixi ) R.Bar-Yehuda and D. Rawitz.ESA2005andDiscrete Optimization 2006.

  49. 2- Dimentional Interval graphs rectangles packing

  50. MIS on axix-parallel rectangles: • NP-Hard even on unit squares [Asano91] • Divide and conquare O(logn)-apx [AKS98] • PTAS where all heights are the same [AKS98] • log(n)/ apx for any constant  [BDMR01] • 4c-apx where c=max #rects covering a point [LNO04] • 12c-apx with demands [Rawitz06]

More Related