1 / 55

Slides prepared by JOHN LOUCKS St. Edward’s University

Slides prepared by JOHN LOUCKS St. Edward’s University. Chapter 4 Decision Analysis. Problem Formulation Decision Making without Probabilities Decision Making with Probabilities Risk Analysis and Sensitivity Analysis Decision Analysis with Sample Information

kirra
Download Presentation

Slides prepared by JOHN LOUCKS St. Edward’s University

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Slides prepared by JOHN LOUCKS St. Edward’s University

  2. Chapter 4Decision Analysis • Problem Formulation • Decision Making without Probabilities • Decision Making with Probabilities • Risk Analysis and Sensitivity Analysis • Decision Analysis with Sample Information • Computing Branch Probabilities

  3. Problem Formulation • The first step in the decision analysis process is problem formulation. • We begin with a verbal statement of the problem. • Then we identify: • the decision alternatives • the states of nature (uncertain future events) • the payoff (consequences) associated with each specific combination of: • decision alternative • state of nature

  4. Problem Formulation • Example: Burger Prince Restaurant Burger Prince Restaurant is considering opening a new restaurant on Main Street. The company has three different building designs (A, B, and C), each with a different seating capacity. Burger Prince estimates that the average number of customers arriving per hour will be 40, 60, or 80.

  5. Problem Formulation • Decision Alternatives d1 = use building design A d2 = use building design B d3 = use building design C • States of Nature s1 = an average of 40 customers arriving per hour s2 = an average of 60 customers arriving per hour s3 = an average of 80 customers arriving per hour

  6. Problem Formulation • Payoff Table • The consequence resulting from a specific combination of a decision alternative and a state of nature is a payoff. • A table showing payoffs for all combinations of decision alternatives and states of nature is a payoff table. • Payoffs can be expressed in terms of profit, cost, time, distance or any other appropriate measure.

  7. Problem Formulation • Payoff Table (Payoffs are Profit Per Week) Average Number of Customers Per Hour s1 = 40 s2 = 60 s3 = 80 Design A Design B Design C $10,000 $15,000 $14,000 $ 8,000 $18,000 $12,000 $ 6,000 $16,000 $21,000

  8. Problem Formulation • Influence Diagram • An influence diagram is a graphical device showing the relationships among the decisions, the chance events, and the consequences. • Squares or rectangles depict decision nodes. • Circles or ovals depict chance nodes. • Diamonds depict consequence nodes. • Lines or arcs connecting the nodes show the direction of influence.

  9. Problem Formulation • Influence Diagram Average Number of Customers Per Hour States of Nature 40 customers per hour (s1) 60 customers per hour (s2) 80 customers per hour (s3) Decision Alternatives Restaurant Design Profit Design A (d1) Consequence Design B (d2) Profit Design C (d3)

  10. Problem Formulation • Decision Tree • A decision tree is a chronological representation of the decision problem. • A decision tree has two types of nodes: • round nodes correspond to chance events • square nodes correspond to decisions • Branches leaving a round node represent the different states of nature; branches leaving a square node represent the different decision alternatives. • At the end of a limb of the tree is the payoff attained from the series of branches making up the limb.

  11. Problem Formulation • Decision Tree 40 customers per hour (s1) 10,000 Design A (d1) 60 customers per hour (s2) 2 15,000 80 customers per hour (s3) 14,000 40 customers per hour (s1) 8,000 Design B (d2) 60 customers per hour (s2) 3 1 18,000 80 customers per hour (s3) 12,000 40 customers per hour (s1) 6,000 Design C (d3) 60 customers per hour (s2) 4 16,000 80 customers per hour (s3) 21,000

  12. Decision Making without Probabilities • Criteria for Decision Making Three commonly used criteria for decision making when probability information regarding the likelihood of the states of nature is unavailable are: • the optimistic (maximax) approach • the conservative (maximin) approach • the minimax regret approach.

  13. Decision Making without Probabilities • Optimistic (Maximax) Approach • The optimistic approach would be used by an optimistic decision maker. • The decision with the overall largest payoff is chosen. • If the payoff table is in terms of costs, the decision with the overall lowest cost will be chosen (hence, a minimin approach).

  14. Decision Making without Probabilities • Optimistic (Maximax) Approach The decision that has the largest single value in the payoff table is chosen. States of Nature Decision (Customers Per Hour) Alternative 40 s1 60 s2 80 s3 Design A d1 10,000 15,000 14,000 Design B d2 8,000 18,000 12,000 Design C d3 6,000 16,000 21,000 Maximaxdecision Maximax payoff

  15. Decision Making without Probabilities • Conservative (Maximin) Approach • The conservative approach would be used by a conservative decision maker. • For each decision the minimum payoff is listed. • The decision corresponding to the maximum of these minimum payoffs is selected. • If payoffs are in terms of costs, the maximum costs will be determined for each decision and then the decision corresponding to the minimum of these maximum costs will be selected. (Hence, a minimax approach)

  16. Decision Making without Probabilities • Conservative (Maximin) Approach List the minimum payoff for each decision. Choose the decision with the maximum of these minimum payoffs. Maximin payoff Maximindecision Decision Minimum Alternative Payoff Design A d1 10,000 Design B d2 8,000 Design C d3 6,000

  17. Decision Making without Probabilities • Minimax Regret Approach • The minimax regret approach requires the construction of a regret table or an opportunity loss table. • This is done by calculating for each state of nature the difference between each payoff and the largest payoff for that state of nature. • Then, using this regret table, the maximum regret for each possible decision is listed. • The decision corresponding to the minimum of the maximum regrets is chosen.

  18. Decision Making without Probabilities • Minimax Regret Approach First compute a regret table by subtracting each payoff in a column from the largest payoff in that column. The resulting regret table is: States of Nature Decision (Customers Per Hour) Alternative 40 s1 60 s2 80 s3 Design A d1 0 3,000 7,000 Design B d2 2,000 0 9,000 Design C d3 4,000 2,000 0

  19. Decision Making without Probabilities • Minimax Regret Approach For each decision list the maximum regret. Choose the decision with the minimum of these values. Decision Maximum Alternative Regret Design A d1 7,000 Design B d2 9,000 Design C d3 4,000 Minimaxdecision Minimaxregret

  20. Decision Making with Probabilities • Assigning Probabilities • Once we have defined the decision alternatives and states of nature for the chance events, we focus on determining probabilities for the states of nature. • The classical, relative frequency, or subjective method of assigning probabilities may be used. • Because only one of the N states of nature can occur, the probabilities must satisfy two conditions: P(sj) > 0 for all states of nature

  21. Decision Making with Probabilities • Expected Value Approach • We use the expected value approach to identify the best or recommended decision alternative. • The expected value of each decision alternative is calculated (explained on the next slide). • The decision alternative yielding the best expected value is chosen.

  22. Expected Value Approach • The expected value of a decision alternative is the sum of the weighted payoffs for the decision alternative. • The expected value (EV) of decision alternative di is defined as where: N = the number of states of nature P(sj ) = the probability of state of nature sj Vij = the payoff corresponding to decision alternative di and state of nature sj

  23. Expected Value Approach • Calculate the expected value (EV) for each decision. • The decision tree on the next slide can assist in this calculation. • Here d1, d2, d3 represent the decision alternatives of Designs A, B, and C. • And s1, s2, s3 represent the states of nature of 40, 60, and 80 customers per hour. • The decision alternative with the greatest EV is the optimal decision.

  24. Expected Value Approach • Decision Tree 40 customers (s1) P(s1) = .4 10,000 Design A (d1) 60 customers (s2) P(s2) = .2 2 15,000 80 customers (s3) P(s3) = .4 14,000 40 customers (s1) P(s1) = .4 8,000 Design B (d2) 60 customers (s2) P(s2) = .2 3 1 18,000 80 customers (s3) P(s3) = .4 12,000 40 customers (s1) P(s1) = .4 6,000 Design C (d3) 60 customers (s2) P(s2) = .2 4 16,000 80 customers (s3) P(s3) = .4 21,000

  25. Expected Value Approach EV(d1) = .4(10,000) + .2(15,000) + .4(14,000) = $12,600 Design A d1 2 EV(d2) = .4(8,000) + .2(18,000) + .4(12,000) = $11,600 Design B d2 3 1 EV(d3) = .4(6,000) + .2(16,000) + .4(21,000) = $14,000 Design C d3 4 Choose the decision alternative with the largest EV: Design C

  26. Expected Value of Perfect Information • Frequently information is available which can improve the probability estimates for the states of nature. • The expected value of perfect information (EVPI) is the increase in the expected profit that would result if one knew with certainty which state of nature would occur. • The EVPI provides an upper bound on the expected value of any sample or survey information.

  27. Expected Value of Perfect Information • Expected value of perfect information is defined as EVPI = |EVwPI – EVwoPI| where: EVPI = expected value of perfect information EVwPI = expected value with perfect information about the states of nature EVwoPI = expected value without perfect information about the states of nature

  28. Expected Value of Perfect Information • EVPI Calculation • Step 1: Determine the optimal return corresponding to each state of nature. • Step 2: Compute the expected value of these optimal returns. • Step 3: Subtract the EV of the optimal decision from the amount determined in step (2).

  29. Expected Value of Perfect Information • EVPI Calculation Calculate the expected value for the optimum payoff for each state of nature and subtract the EV of the optimal decision. EVPI= .4(10,000)+.2(18,000)+.4(21,000)-14,000 = $2,000

  30. Risk Analysis • Risk analysis helps the decision maker recognize the difference between: • the expected value of a decision alternative, and • the payoff that might actually occur • The risk profile for a decision alternative shows the possible payoffs for the decision alternative along with their associated probabilities.

  31. Risk Analysis • Risk Profile for Decision Alternative d3 .50 .40 .30 Probability .20 .10 5 10 15 20 25 Profit ($ thousands)

  32. Sensitivity Analysis • Sensitivity analysis can be used to determine how changes to the following inputs affect the recommended decision alternative: • probabilities for the states of nature • values of the payoffs • If a small change in the value of one of the inputs causes a change in the recommended decision alternative, extra effort and care should be taken in estimating the input value.

  33. Sensitivity Analysis • Resolving Using Different Values for the Probabilities of the States of Nature P(s2) P(s1) P(s3) EV(d3) EV(d2) EV(d1) Optimal d 12,900 12,987 12,700 12,250 11,800 13,500 13,800 14,100 14,250 14,319 13,500 12,250 11,000 14,750 15,000 15,250 .35 .30 .35 .333 .333 .333 .40 .30 .30 .50 .25 .25 .60 .20 .20 .25 .50 .25 .20 .60 .20 .15 .70 .15 12,400 12,654 12,200 11,500 10,800 14,000 14,800 15,600 d3 d3 d3 d1and d3 d1 d3 d3 d2

  34. Decision Analysis With Sample Information • Knowledge of sample (survey) information can be used to revise the probability estimates for the states of nature. • Prior to obtaining this information, the probability estimates for the states of nature are called prior probabilities. • With knowledge of conditional probabilities for the outcomes or indicators of the sample or survey information, these prior probabilities can be revised by employing Bayes' Theorem. • The outcomes of this analysis are called posterior probabilities or branch probabilities for decision trees.

  35. Decision Analysis With Sample Information • Example: Burger Prince Burger Prince must decide whether to purchase a marketing survey from Stanton Marketing for $1,000. The results of the survey are "favorable“ or "unfavorable". The branch probabilities corresponding to all the chance nodes are listed on the next slide.

  36. Decision Analysis With Sample Information • Branch Probabilities P(Favorable market survey) = .54 P(Unfavorable market survey) = .46 P(40 customers per hour |favorable) = .148 P(60 customers per hour |favorable) = .185 P(80 customers per hour |favorable) = .667 P(40 customers per hour |unfavorable) = .696 P(60 customers per hour |unfavorable) = .217 P(80 customers per hour |unfavorable) = .087

  37. Decision Analysis With Sample Information • Influence Diagram Avg. Number of Customers Per Hour Market Survey Results Decision Chance Consequence Profit Market Survey Restaurant Design (seating capacity)

  38. Decision Analysis With Sample Information • Decision Tree (top half) s1P(s1|I1) = .148 10,000 d1 s2P(s2|I1) = .185 4 15,000 s3P(s3|I1) = .667 14,000 s1P(s1|I1) = .148 8,000 d2 s2P(s2|I1) = .185 5 2 18,000 s3P(s3|I1) = .667 P(I1) = .54 12,000 I1 s1P(s1|I1) = .148 6,000 d3 s2P(s2|I1) = .185 6 16,000 1 s3P(s3|I1) = .667 21,000

  39. Decision Analysis With Sample Information • Decision Tree (bottom half) s1P(s1|I2) = .696 10,000 1 d1 s2P(s2|I2) = .217 7 15,000 s3P(s3|I2) = .087 14,000 I2 s1P(s1|I2) = .696 8,000 P(I2) = .46 d2 s2P(s2|I2) = .217 8 3 18,000 s3P(s3|I2) = .087 12,000 s1P(s1|I2) = .696 6,000 d3 s2P(s2|I2) = .217 9 16,000 s3P(s3|I2) = .087 21,000

  40. Decision Analysis With Sample Information • Decision Strategy • A decision strategy is a sequence of decisions and chance outcomes. • The sequence of decisions chosen depends on the yet to be determined outcomes of chance events. • The optimal decision strategy is based on the Expected Value with Sample Information (EVwSI). • The EVwSI is calculated by making a backward pass through the decision tree.

  41. Decision Analysis With Sample Information • Expected Value with Sample Information (EVwSI) • Step 1: • Determine the optimal decision strategy and its expected returns for the possible outcomes of the sample using the posterior probabilities for the states of nature. • Step 2: • Compute the expected value of these optimal returns.

  42. Decision Analysis With Sample Information d1 • EV = .148(10,000) + .185(15,000) • + .667(14,000) = $13,593 4 • $17,855 d2 • EV = .148 (8,000) + .185(18,000) • + .667(12,000) = $12,518 5 2 I1 (.54) d3 • EV = .148(6,000) + .185(16,000) • +.667(21,000) = $17,855 6 1 d1 • EV = .696(10,000) + .217(15,000) • +.087(14,000) = $11,433 7 I2 (.46) d2 • EV = .696(8,000) + .217(18,000) • + .087(12,000) = $10,554 8 3 • $11,433 d3 • EV = .696(6,000) + .217(16,000) • +.087(21,000) = $9,475 9

  43. Decision Analysis With Sample Information d1 $13,593 4 • $17,855 d2 $12,518 5 2 I1 (.54) d3 $17,855 6 EVwSI = .54(17,855) + .46(11,433) = $14,900.88 1 d1 7 I2 (.46) $11,433 d2 $10,554 8 3 • $11,433 d3 9 $ 9,475

  44. Decision Analysis With Sample Information • Expected Value with Sample Information (EVwSI) EVwSI = .54($17,855) + .46($11,433) = $14,900.88 • Optimal Decision Strategy • If the outcome of the survey is "favorable”, choose Design C. • If the outcome of the survey is “unfavorable”, choose Design A.

  45. Decision Analysis With Sample Information • Risk Profile for Optimal Decision Strategy P(s|I) P(I) Payoff P(s1|I1) = .148 P(s2|I1) = .185 P(s3|I1) = .667 .08 .10 .36 I1 = .54 I1 = .54 I1 = .54 $ 6,000 $16,000 $21,000 Payoffs for d3 P(s1|I2) = .696 P(s2|I2) = .217 P(s3|I2) = .087 .32 .10 .04 ---------------- 1.00 I2 =.46 I2 =.46 I2 =.46 $10,000 $15,000 $14,000 Payoffs for d1

  46. Decision Analysis With Sample Information • Risk Profile for Optimal Decision Strategy .50 .40 .36 .32 .30 Probability .20 .10 .10 .10 .08 .04 5 10 15 20 25 Profit ($ thousands)

  47. Expected Value of Sample Information • The expected value of sample information (EVSI) is the additional expected profit possible through knowledge of the sample or survey information. EVSI = |EVwSI – EVwoSI| where: EVSI = expected value of sample information EVwSI = expected value with sample information about the states of nature EVwoSI = expected value without sample information about the states of nature

  48. EVSI = $14,900.88 - $14,000 = $900.88 Expected Value of Sample Information • EVSI Calculation • Subtract the EVwoSI (the value of the optimal decision obtained without using the sample information) from the EVwSI. • Conclusion Because the EVSI ($900.88) is less than the cost of the survey ($1000.00), the survey should not be purchased.

  49. Efficiency of Sample Information • The efficiency rating (E) of sample information is the ratio of EVSI to EVPI expressed as a percent. • The efficiency rating (E) of the market survey for Burger Prince Restaurant is:

  50. Computing Branch Probabilities • Bayes’ Theorem can be used to compute branch probabilities for decision trees. • For the computations we need to know: • the initial (prior) probabilities for the states of nature, • the conditional probabilities for the outcomes or indicators of the sample information, given each state of nature. • A tabular approach is a convenient method for carrying out the computations.

More Related