1 / 19

Pseudo-polynomial time algorithm (The concept and the terminology are important)

Understand the concept and terminology of the Partition Problem, a widely known NP-complete problem analyzed using dynamic programming. Explore the pseudo-polynomial time algorithm, backtracking method, and its implications in solving NP-complete problems.

kirsch
Download Presentation

Pseudo-polynomial time algorithm (The concept and the terminology are important)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pseudo-polynomial time algorithm(The concept and the terminology are important) Partition Problem: Input: Finite set A=(a1, a2, …, an} and a size s(a) (integer) for each aA. Question: Is there a subset A’A such that  a A’ s(a) =  a A –A’ s(a)? Theorem: Partition problem is NP-complete (Karp, 1972). An dynamic algorithm: For in and j 0.5  a A s(a) , define t(i, j) to be true if and only if there is a subset Ai of {a1, a2, …, ai} such that  a Ai s(a)=j. Formula: T(i,j)=true if and only if t(i-1, j)=true or t(i-1, j-s(ai))=true.

  2. Example j Figure 4.8 Table of t(i,j) for the instance of PARTITION for which A={a1,a2,a3,a4,a5}, s(a1)=1, s(a2)=9, s(a3)=5, s(a4)=3, and s(a5)=8. The answer for this instance is "yes", since t(5,13)=T, reflecting the fact that s(a1)+s(a2)+s(a4)=13=26/2.

  3. Backtracking i=n; W=B; if ( t(n, W)== false) then stop; While (i> 0 ) do { if (t(i, W) == true) { if (t(i-1, W)== true) then i=i-1; else { W=W-s(ai); print “ai” i=i-1; } } }

  4. Time complexity The algorithm takes at most O(nB) time to fill in the table, where (Each cell needs constant time to compute). Do we have a polynomial time algorithm to solve the Partition Problem and thus all NP-complete problems? No. O(nB) is not polynomial in terms of the input size. S(ai)=2n=10000…0 . (binary number of n+1 bits ). So B is at least O(2n). The input size is O(n2) if there some ai with S(ai)=2n. B is not polynomial in terms of n (input size) in general. However, if any upper bound is imposed on B, (e.g., B is Polynomial), the problem can be solved in polynomial time for this special case. (This is called pseudo-polynomial.)

  5. 0-1 version

  6. Change-making problem: Given an amount n and unlimited quantities of coins of each of the denominations d1, d2, …, dm, find the smallest number of coins that add up to n or indicate that the problem does not have a solution. Solution: Let d(i) be the minimum number of coins used for amount i. Initial values: d(0)=0, d(i)=. equation: d(i) = min d(i-dk)+1. k=1, 2, …, m.

  7. Change-making problem: Initial values: d(0)=0, d(i)=. equation: d(i) = min d(i-dk)+1 k=1, 2, …, m & i-dk≥0 d1=2 and d2=5. i=7. i= 0, 1, 2, 3, 4, 5, 6, 7 d(i): 0, , 1, , 2, 1, 3, 2. Backtracking: $5, $2. (how do you get d(7)=2? d(7)=d(2)+5. Print $5 and goto d(2). How do you get d(2)? D(2)=2+d(0). Print out $2 and goto d(0). Whenever reach d(0), we stop. ) for i=3, since d(3)= , there is no solution.

  8. More On Dynamic programming Algorithms Shortest path with edge constraint: Let G=(V, E) be a directed graph with weighted edges. Let s and v be two vertices in V. Find a shortest path from s to u with exactly k edges. Here kn-1 is part of the input. Solution: Define d(i, v) be the length of the shortest path from s to v with exactly i edges. d(i, v)=min {c(w, v)+d(i-1, w)} wV. Initial values: d(i, s)=0, for i=0, d(i,s)=  for i=1, 2, …, d(0, v)=; d(k, v) will give the length of the shortest path. A backtracking process can give the path.

  9. u 5 v 8 8 -2 6 -3 8 7 z 0 -4 2 7 8 8 9 x y • i z, u, x, v, y • 0 0     • 1  6z 7z   •   14u 4x 2u • 3 4y 2v  9y 23x.

  10. Exercise: Let T be a rooted binary tree, where each internal node in the tree has two children and every node (except the root) in T has a parent. Each leaf in the tree is assigned a letter in ={A, C, G, T}. Figure 1 gives an example. Consider an edge e in T. Assume that every end of e is assigned a letter. The cost of e is 0 if the two letters are identical and the cost is 1 if the two letters are not identical. The problem here is to assign a letter in  to each internal node of T such that the cost of the tree is minimized, where the cost of the tree is the total cost of all edges in the tree. Design a polynomial-time dynamic programming algorithm to solve the problem.

  11. A A C Figure 1 A

  12. Assignment 4. (Due on Friday of Week 13. Drop it in Mail Box 71 or 72) This time, Sze Man Yuen and I can explain the questions, but we will NOT tell you how to solve the problems. Question 1. (30 points) Give a polynomial time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers. Your algorithm should use linear space. (10 points for linear space) (Assume that each integer appears once in the input sequence of n numbers) Example: Consider sequence 1,8, 2,9, 3,10, 4, 5. Both subsequences 1, 2, 3, 4, 5 and 1, 8, 9, 10 are monotonically increasing subsequences. However, 1,2,3, 4, 5 is the longest.

  13. Assignment 4. • Question 2. (30 points) Given an integer d and a sequence of integers s=s1s2…sn. Design a polynomial time algorithm to find the longest monotonically increasing subsequence of s such that the difference between any two consecutive numbers in the subsequence is at least d. • Example: Consider the input sequence 1,7,8, 2,9, 3,10, 4, 5. The subsequence 1, 2, 3, 4, 5 is a monotonically increasing subsequence such that the difference between any two consecutive numbers in the subsequence is at least 1. • 1, 3, 5 is a monotonically increasing subsequence such that the difference between any two consecutive numbers in the subsequence is at least 2.

  14. Assignment 4. Question 3. (40 points). Suppose you have one machine and a set of n jobs a1, a2, …, an to process on that machine. Each job aj has an integer processing time tj, a profit pjand an integer deadline dj. The machine can process only one job at a time, and job aj must run uninterruptedly for tjconsecutive time units. If job aj is completed by its deadline dj, you receive a profit pj, but if it is completed after its deadline, you receive a profit of 0. Give a dynamic programming algorithm to find the schedule that obtains the maximum amount of profit. What is the running time of your algorithm? (Let d be the biggest deadline, the running time can be related to d. )

More Related