1 / 25

Visualization Knowledge Query Language (VKQL) Workshop

Visualization Knowledge Query Language (VKQL) Workshop. Nicholas Del Rio University of Texas at El Paso Computer Science. Workshop Objectives. U nderstand notion and purpose of visualization queries Understand why writing queries may be easier that writing visualization programs

klaus
Download Presentation

Visualization Knowledge Query Language (VKQL) Workshop

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Visualization Knowledge Query Language (VKQL) Workshop Nicholas Del Rio University of Texas at El Paso Computer Science

  2. Workshop Objectives • Understand notion and purpose of visualization queries • Understand why writing queries may be easier that writing visualization programs • Learn the VKQL syntax and practice posing queries

  3. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  4. Velocity Model Visualization • A set of isosurfaces • extracted from a seismic velocity model • Covers a region in southern New Mexico 3 km/s Depth 8 km/s

  5. Visualizing the Velocity Model • Generated by custom Java application • relied on Visualization Toolkit (VTK) for rendering • VTK was developed for rendering 3D visualizations • VTK is supported by Sandia, Los Alamos, ARL, and others • Writing a custom visualization application: • may rely on third party package to support rendering • may need to perform some transformations on input dataset before rendering

  6. Visualization Toolkits • Visualization Toolkit (VTK) was used to render the velocity visualization • VTK is a toolkit that provides functions such as: • Filtering • Gridding/interpolating • Mapping (i.e., transform data into views like isosurfaces) • Rendering the views • Functions are referred to as operators • Generic mapping tools (GMT): 60 operators • VTK: hundreds of operators

  7. Visualization Pipeline Model • VTK requires that users write pipelines • the output of an operator feeds into the operator next in the pipeline sequence • first operator in pipeline is usually data reader • final operator in pipeline is usually renderer • Thus the Java program that visualizes the velocity model can be seen as a pipeline of VTK operators • It is up to the users to write these pipelines…

  8. VTK Java Pipeline For Velocity Model vtkImageReaderrdr= new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFiltercontours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMappercontMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); • vtkActorcontActor = new vtkActor(); • contActor.SetMapper(contMapper); • contActor.RotateX(105); • vtkRenderer ren1 = new vtkRenderer(); • ren1.AddActor(contActor); • ren1.AddActor2D(outlineActor); • ren1.SetBackground(1,1,1); • vtkRenderWindowrenWin = new vtkRenderWindow(); • renWin.SetOffScreenRendering(1); • renWin.AddRenderer(ren1); • renWin.SetSize(300,300); • renWin.Render(); • vtkJPEGWriterimg= new vtkJPEGWriter(); • img.SetInputConnection(renWin.GetOutputPort()); • img.SetFileName(outputDatasetFilePath); • img.SetQuality(100);

  9. Pipeline of Visualization Operators Op 5 vtkImageReaderrdr= new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFiltercontours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMappercontMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); • vtkActorcontActor = new vtkActor(); • contActor.SetMapper(contMapper); • contActor.RotateX(105); • vtkRenderer ren1 = new vtkRenderer(); • ren1.AddActor(contActor); • ren1.AddActor2D(outlineActor); • ren1.SetBackground(1,1,1); • vtkRenderWindowrenWin = new vtkRenderWindow(); • renWin.SetOffScreenRendering(1); • renWin.AddRenderer(ren1); • renWin.SetSize(300,300); • renWin.Render(); • vtkJPEGWriterimg= new vtkJPEGWriter(); • img.SetInputConnection(renWin.GetOutputPort()); • img.SetFileName(outputDatasetFilePath); • img.SetQuality(100); Op 1 Op 6 Op 2 Op 7 Op 3 Op 8

  10. Different Types of Operators Op 5 Transformer vtkImageReaderrdr= new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFiltercontours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMappercontMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); • vtkActorcontActor = new vtkActor(); • contActor.SetMapper(contMapper); • contActor.RotateX(105); • vtkRenderer ren1 = new vtkRenderer(); • ren1.AddActor(contActor); • ren1.AddActor2D(outlineActor); • ren1.SetBackground(1,1,1); • vtkRenderWindowrenWin = new vtkRenderWindow(); • renWin.SetOffScreenRendering(1); • renWin.AddRenderer(ren1); • renWin.SetSize(300,300); • renWin.Render(); • vtkJPEGWriterimg= new vtkJPEGWriter(); • img.SetInputConnection(renWin.GetOutputPort()); • img.SetFileName(outputDatasetFilePath); • img.SetQuality(100); Op 1 Transformer Op 6 Renderer View Mapper Op 2 Transformer Op 7 Transformer Op 3 Op 8 Transformer

  11. Operators are Parameterized Op 5 P1 vtkImageReaderrdr= new vtkImageReader(); rdr.SetFileName(inputDatasetFilePath); rdr.SetDataScalarTypeToUnsignedShort(); rdr.SetDataByteOrderToLittleEndian(); rdr.SetFileDimensionality(3); rdr.SetDataOrigin(0,0,0); rdr.SetDataSpacing(1,1,1); rdr.SetDataExtent(0,230,0,25,0,68); rdr.SetNumberOfScalarComponents(1); rdr.FileLowerLeftOn(); rdr.Update(); vtkContourFiltercontours = new vtkContourFilter(); contours.SetInput(rdr.GetOutput()); contours.GenerateValues(35,0.0,9000.0); vtkPolyDataMappercontMapper = new vtkPolyDataMapper(); contMapper.SetInput(contours.GetOutput()); contMapper.SetScalarRange(0.0,9000.0); • vtkActorcontActor = new vtkActor(); • contActor.SetMapper(contMapper); • contActor.RotateX(105); • vtkRenderer ren1 = new vtkRenderer(); • ren1.AddActor(contActor); • ren1.AddActor2D(outlineActor); • ren1.SetBackground(1,1,1); • vtkRenderWindowrenWin = new vtkRenderWindow(); • renWin.SetOffScreenRendering(1); • renWin.AddRenderer(ren1); • renWin.SetSize(300,300); • renWin.Render(); • vtkJPEGWriterimg= new vtkJPEGWriter(); • img.SetInputConnection(renWin.GetOutputPort()); • img.SetFileName(outputDatasetFilePath); • img.SetQuality(100); P7 Op 1 P2 Op 6 P3 P8 P4 Op 2 Op 7 P9 P5 Op 3 Op 8 P6

  12. Declarative Requests • Many user skills needed to visualize data • Aside from cognitive aspects of visualization, a large part of the problem is engineering • Stems from fact that we generate visualizations imperatively (i.e., write code) Can we provide a means for users to generate visualizations declaratively (i.e., generatewhat visualization they want without having to write code)?

  13. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  14. Visualization Query • The velocity model visualization was actually a result of a visualization query Requested Visualization Desired View URL of Data to visualize Format of dataset Semantic Type of dataset WDO types (UTEP) Parameter Argument Viewer

  15. Visualization Queries and SQL • Visualization queries mirror SQL queries • query request is specified declaratively • request is then translated into a query plan • query plan computes the result requested by the query • Information specified in visualization queries is used to derive pipelines rather than query plans • The pipeline in turn generates the visualization requested in the query

  16. Information Needed to Write Queries • At a minimum you need to know: • The type of your dataset (e.g., gravity, seismic) • The format it is stored in (e.g., netCDF) • The URL of your dataset • With only above info, all possible visualizations will be returned (wildcard) • For more control, you need to know: • What view you want (i.e., chart, isolines, volume) • The appropriate values for operator parameters

  17. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  18. VKQL Syntax • A conjunction of Prolog statements that contain: • hasView( -DATA, ?VIEW) • hasContent(-DATA, +URL), • hasType(-DATA, +TYPE), • hasFormat(-DATA, +FORMAT) • [hasValue(+PARAM, +VALUE)]

  19. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  20. Activity 1: Manual Inspection of Query • Navigate to: http://trust.utep.edu/visko/vkql-examples/ • Refer to the first query specified on the page: • What viewer is the query requesting the system to target? • What view is the query requesting the system to generate? • What is the type and format of the dataset being visualized? • Are there any parameter bindings? If so what is the parameter bound to?

  21. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  22. Submitting VKQL Queries • VKQL queries can be entered and executed at: http://trust.utep.edu/visko/vkql/ • You can build queries by selecting values from combo boxes • You can type queries manually in a text box without any guidance or copy and paste an existing query

  23. Activity 2: Pasting Examples • Navigate to: http://trust.utep.edu/visko/vkql-examples/ • Copy query for: Gridded Time with Rotation • Paste and Submit Query in Query Submission Page • Try manually changing the values assigned to: • xRotation • yRotation • zRotation • Resubmit with new bindings

  24. Workshop Summary • Generating Visualizations Imperatively • Visualization Query • VKQL Syntax and Examples • Activity 1: Manual Inspection of Query • Activity 2: Copy and Pasting Examples • Conclusion

  25. Conclusion • Writing queries may be easier to request for visualization generation than writing imperative code • VKQL Queries can be constructed a few ways using the VKQL Query Submit interface • VKQL Queries can target more than a single toolkit for generation

More Related