1 / 21

Data Civilizer by A Collection of Folks at MIT, QCRI, Waterloo and TU Berlin

Data Civilizer aims to reduce the time data scientists spend on manual tasks like locating, accessing, and cleaning data, enabling them to focus more on analysis. With a goal to drive down the 98% of time spent on data preparation, Data Civilizer offers enterprise crawling for data discovery, transformations, join path identification, and data cleaning. The platform addresses challenges of scale and varied discovery needs, offering a scalable solution for large-scale data discovery through summarization, mining relationships, and discovery algebra. Stay tuned for innovative features like semantic transformations, join path clustering, and provenance tracking.

klula
Download Presentation

Data Civilizer by A Collection of Folks at MIT, QCRI, Waterloo and TU Berlin

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Data Civilizerby A Collection of Folks at MIT, QCRI, Waterloo and TU Berlin

  2. The Problem Mark Schreiber (Merck) reports that his data scientists spend 98% of their time Locating data of interest Accessing data of interest Cleaning and transforming data of interest I.e. 39 hours a week of “mung work” and 1 hour a week doing the job for which they were hired NOBODY reports less than 80% mung work!

  3. Data Civilizer Goal is to make Mark Schreiber happy i.e. drive down the 98%

  4. Data Civilizer Enterprise crawling to enable next steps Data Discovery Find tables of interest to a data scientist Transformations Syntactic (e.g. European dates to US dates) Semantic (e.g. Merck has five different ID systems for chemical compounds) Join path identification and choice Data cleaning

  5. Our Demo Enterprise crawling to enable next steps Data Discovery Find tables of interest to a data scientist Transformations Syntactic (e.g. European dates to US dates) Semantic (e.g. Merck has five different ID systems for chemical compounds) Join path identification and choice Data cleaning

  6. Context Merck has ~4000 Oracle data bases Plus a data lake Plus untold files Plus untold spreadsheets Plus they are interested in public data from the web Any solution has to work at scale!!!!!!

  7. We Can’t Do a Merck Demo They are protective of their data We haven’t cracked the problem of getting access to much of their data Ergo we don’t have a suitable crawler

  8. Instead….. We are using the MIT Data Warehouse 2400 tables in an Oracle database Students, courses, buildings, … 160 are “semi-public” Campus personal have ad-hoc questions For example: How many employees work in degree granting departments?

  9. Analysts spend more time finding relevant data than analyzing it

  10. Data Civilizer Discovery Module Goal: Find data relevant to the question at hand Challenges of scale and varied discovery needs Approach to large scale data discovery: Data Summarization Mining relationships: Linkage graph Discovery algebra: express different queries

  11. Data Civilizer Discovery Module Goal: Find data relevant to the question at hand Challenge: scale and varied discovery needs Approach to large scale data discovery: Data Summarization Mining relationships: Linkage graph Discovery algebra: express different queries

  12. Data Civilizer Discovery Module Goal: Find data relevant to the question at hand Challenge: scale and varied discovery needs Approach to large scale data discovery: Data Summarization Mining relationships: Linkage graph Discovery algebra: express different queries

  13. Demo

  14. Which Join Path is the Best? Each join path leads to a different view different size – coverage different quality – cleanliness Combine the two metrics to pick the path But, how to estimate cleanliness?

  15. Estimating cleanliness • Estimate the cleanliness of source data • Outlier detection • Check integrity constraints • New method based on relationships in linkage graph • Propagate cleanliness from source to view

  16. View Cleaning with a Budget Where to clean Clean sources may waste budget on irrelevant cells Clean view may waste budget on duplicates Only clean source cells that affect the view Which cell to clean? Clean cells with the biggest impact to the view. Leverage cleanliness propagation to calculate the impact

  17. Demo

  18. What’s Coming Eye Candy!!!!! Semantic transformations Using Data Xformer (CIDR 2015, SIGMOD 2015) Inside the firewall as well as out on the web Partner to get syntactic ones Workflow system Data Civilizer has to be iterative

  19. What’s Coming Join path clustering To identify ones with the same semantics Will require human input! Data cleaning cannot be totally manual QCRI has done a lot of work in this area We have a bunch of ideas on how to move forward Provenance Mark is interested in what is derived from what

  20. What’s Coming Cannot copy all data of interest into a data lake There is simply too much of it Have to access data “in situ” and on demand Requires a polystore And we have built one (BigDAWG)

  21. Stay Tuned for a Complete System

More Related