750 likes | 758 Views
Explore the fundamentals of rotational spectroscopy, including the Hamiltonian, energy levels, selection rules, allowed transitions, and spectrum analysis for linear molecules. Discover advanced details like centrifugal distortion and spin effects.
E N D
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
Rotational Spectra Linear Molecules E = ½I2
Rigid Diatomic molecule Rotational Spectra Linear Molecules E = ½I2
Rigid Diatomic molecule Angular velocity Rotational Spectra Linear Molecules E = ½I2
Rigid Diatomic molecule Angular velocity Rotational Spectra Linear Molecules E = ½I2 m2 m1
Rigid Diatomic molecule Angular velocity Rotational Spectra Linear Molecules E = ½I2 m2 m1 I = r2
Rigid Diatomic molecule Angular velocity Rotational Spectra Linear Molecules E = ½I2 m2 m1 • I = r2 • = m1m2/(m1+m2)
m = 16 For carbon monoxide CO m = 12 • = m1m2/(m1+m2) = 12x16/(12+16) = 12x16/28
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
Rotational Spectra Linear Molecules E = ½I2 J2/2I (J = I )
Rotational Spectra Linear Molecules E = ½I2 J2/2I (J = I ) E = ½ mv2 p2/2m (p = mv)
Rotational Spectra Linear Molecules E = ½I2 J2/2I (J = I ) E = ½ mv2 p2/2m (p = mv) H = J2/2I (Note V= 0)
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
H = J2/2I J J2J =ħ2 J(J+1)
H = J2/2I J J2J =ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
H = J2/2I J J2J =ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1)
H = J2/2I J J2J =ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1
H = J2/2I J J2J =ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1) F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2J J*J2 Jd
Rigid Diatomic molecule Angular velocity Rotational Spectra Linear Molecules E = ½I2 m2 m1 • I = r2 • = m1m2/(m1+m2) B (MHz) = 505391/I (uÅ 2) B (cm-1) = 16.863/I (uA2)
Take a sheet of lined paper and assign the line spacing as 2B
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 1 2B 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0
Rotational Spectroscopy of Linear Molecules J 7 56B 14B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B 0
B(J+1)(J+2) J+1 BJ(J+1) J Absorption
B(J+1)(J+2) J+1 BJ(J+1) J Emission
General Relation for F(J) B(J+1)(J+2) J+1 F(J) BJ(J+1) J Harry Kroto 2004
General Relation for F(J) B(J+1)(J+2) J+1 F(J) B(J+1) J BJ(J+1) J NB Common factor
B(J+1)(J+2) J+1 F(J) B(J+1) J J F(J) = 2B(J+1)
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
A Classical Description > E = T + V E = ½I2 V=0 B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J =±1 E Transition Frequencies > F (J) = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc
J 7 56B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 0 0 Frequency
J 7 56B 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B 2B 0 0 2B Frequency