1 / 23

Some are not thieves!

This project focuses on improving the user revocation process for content distributors, aiming to provide a more flexible and efficient system. By using variably hard functions and secret sharing schemes, the revocation protocol can be enhanced to achieve graceful revocation and minimize logistical costs.

kmonier
Download Presentation

Some are not thieves!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Some are not thieves! Alexandr Andoni (MIT) (work done while at PARC) Jessica Staddon (PARC)

  2. Model • Content distributor • Broadcast channel (accessible to all) • E.g., Pay-TV, Online service • Content encrypted to limit access • Users • Privileged – ones that can decrypt the content  • Revoked – whose privileges where revoked due to non-payment, expiration, etc  • Key management protocol (revocation protocol) • More on this later

  3. Problem • 0/1 (/) user hierarchy is too rigid • Ineffective, disruptive when the revocation happened unexpectedly, in error, etc • Imagine unfortunate scenario • User is late on the monthly payment • => is revoked by the distributor • => misses favorite TV show • => has to ask for reinstatement: high logistical cost • Want: • Graceful revocation • Cues on pending revocation: inherent to the content

  4. Basic Solution • Servicedegradation • Degrade quality of service (e.g., content is delayed or partial) • Affects users that are “a little late” on payment • Cue of pending revocation: degradation itself • What means “degradation”? • Our definition: • Degraded = it takes more effort to decrypt the content; but all content is decrypted in the end • Other possible definitions (not considered here): • Video is choppy [Abdalla-Shavitt-Wool’03]

  5. How? • Enforce user classes via key management protocols (a.k.a. revocation protocols) • Revocation protocol = can target any set P of users • Degradation protocol is a specialization of the revocation protocol, but hope to improve parameters • Effort to decrypt: via variably hard functions • Computing the function incurs computational effort • The amount of computational effort is parametrizable • Related to “pricing functions” [Dwork-Naor’92], “proofs of work” [Jakobsson-Juels’03] (in the context of spam-fighting)

  6. Variably Hard Functions • Inspired from the idea of “proofs of work” proposed mostly for fighting spam: • For an email m, have to attach F(m) such that: • “Moderately hard” to compute F(m) (e.g., 10secs) • Easy/fast to check that <m,F(m)> is valid • We need: • Parametrizable “moderately hard” function F • A degraded user gets “m” and a hardness parameter p • For fixed m, F(m) must be the same for all p

  7. Definition: Variably Hard Functions • F is variably hard if: • There is some test function g(x) (think g(x)=m) • For each x, there is a collection of hints Hints(x) • A hint is a set Y(p)(x) of size 2p s.t. xY(p)(x) • It takes ≥O(2p) time to compute F(x) given only g(x) and some Y(p)(x) (x is not given) • “Hardness” in not knowing x • Can compute F(x) in 2p given g(x), Y(p)(x): • Just try all possible xY(p)(x) and test with g(x)

  8. Construction via OW Permutation • Let P be a one-way permutation • Define test function g(x)=P(x) • Define F(x)=x • Computing F(x) knowing g(x) is equivalent to inverting P • A hint Y(p)(x) is the set of y’s that have same first k-p bits as x k bits x= 01001… 11010... Y(p)(x)= 01001… *****... p bits

  9. To privileged x= To degraded Using Variably Hard Functions • Encrypt the content with a session key SK=F(x) • Broadcast g(x) • Distribute hints of x using revocation protocol • Privileged users P: receive complete hint => easy to compute SK • Degraded users D: receive partial hint => moderate to compute • Revoked users R: receive no hint => impossible to compute • Inefficient: • Have to be able to target only P • More direct approach?

  10. Revocation Protocols • Non-trivial: • If all users have the same key, how do we “take back” the key from a revoked user? • Studied since ’90s: • Stateful – users have “state”; but might be fatal if they miss a part of the broadcast • Stateless • Most common (stateless) are based on e.g., Shamir-like secret sharing

  11. Improve Revocation • Illustration for revocation based on secret sharing • Revocation protocol of [Kumar-Rajagopalan-Sahai’99] in two steps: • 1st step: uses cover free families • Let U be a universe of keys • Users get distinct subsets Su U (all Su form cover-free family) • A message SK is broadcasted as: • Ek1[SK], Ek2[SK]… Eks[SK] , for some T={k1…ks}U • If SuT≠, then the user can decrypt SK • Design sets Su such that: • for any Su (privileged user), and S1,S2,…Sr (revoked) • |Su\S1\S2\...Sr|≥a|Su|, where a is a constant

  12. Revocation via Secret Sharing (2) • 2nd step: reduce communication blow-up • For revoked S1,S2,…Sr, encrypt with all T=U\S1\S2\...Sr • Parameters so far: • User storage: |Su|=O(r log n) keys • Communication blow-up: |U|=O(r2 log n) • Can improve: a privileged user gets a|Su| copies of SK • Use a secret sharing scheme! • Create Ushares of SK such that any a|Su| shares are enough to reconstruct SK • Obtain parameters [KRS99, randomized]: • User storage: O(r*log n) • Communication blowup: O(r)

  13. Secret Sharing for Degradation • [KRS’99] establishes: • A privileged user gets a|Su|=O(r log n) shares of SK • A revoked user gets 0 shares • Design such that a degraded user gets, e.g., (1-c)*a|Su| shares (0<c<1): • These shares constitute a hint Y(p)(x), p=ca|Su| • A degraded user recovers SK in 2ca|Su| steps • Indeed can modify the [KRS’99] cover-free family: • If key kU belongs to D but not R, choose k to be in T with some probability p≈1-c

  14. Deficiencies • Can obtain some slightly better bounds, but messy • Many parameters (max # revoked, max # degraded) • Have to know the parameters in advance (same for KRS’99) • Not collusion resistant against degraded users • Several degraded users may get all the necessary shares • Not a big problem • Degradation mainly serves as a cue • Act of colluding is sufficient to serve as a cue

  15. Towards (more) practical protocols • Observations: • Not necessary to redistribute hints for each new session if user classes don’t change • Want finer division into classes: • Privileged class P • Degraded classes D1, D2,… DL (progressively worse service quality) • Revoked class R • Known degradation schedule: sometimes we know when somebody will probably be degraded

  16. Practical Degradation Protocols • Will present two: • Known degradation schedule: trial period scenario • Unknown degradation schedule: general scenario

  17. normal service degraded revoked time t=0 subscription t=30 t=40 Trial Period Scenario: Model • Trial period scenario • In the period [30,40] days, the service is progressively worse • 1 degraded class per day: D1,D2,…D10 • Each Di has its “hardness” parameter

  18. ←A19←A20←A21←… ←A29←A30←A31←… Legend: ← means application of a one-way function/permutation … ? … ? ? Trial Period Scenario: Construction • Broadcast on day t: EKt[SK], EF(x)[SK], g(x) • Ki is a series such that Ki=W(Ki+1); W is one-way • Ai is defined the same way • A user gets K29 and A29 • On day t<30, the user can decrypt SK with Kt • On day t≥30, the user can compute F(x): from g(x) and an incomplete hint based on At-10…A29 At t=30, x= At t=31, x=

  19. General Scenario • Can generalize the previous protocol • Same idea of using At series to create many degradation classes • But need more attentive distribution of At and Kt: using revocation protocols this time • Can be based on any revocation protocol • Expensive communication only when classes change (somebody is degraded/revoked)

  20. Final Remarks • Computational effort may vary on different machines: • Then, use in fact the “memory-bound” functions of [Dwork-Goldberg-Naor’03] • Can guarantee O(2p) memory accesses • More uniform across platforms • We adapted “memory-bound” functions to be variably hard

  21. Conclusions • Introduced the notion of service degradation • Degraded users: between privileged and revoked • Have degraded quality • Serves as a cue to impending revocation • Construction based on: • Variably hard functions • Revocation protocols

  22. Interesting Questions • How much can degradation buy us in terms of user storage and communication? • Is this the right approach to degradation? Are there other (better) ones?

  23. Thank you!

More Related