180 likes | 461 Views
IMAGE restoratıon. Robot Vision Prof . Dr. Hasan OCAK. Image blur model. Frequency domaın model. INVERSE fılterıng. EXAMPLE: Inverse fılterıng. İdeal Bölütleme. Original Image Blurred Image Restored with H -1 ( u , v ). Blurred with Gaussian σ = 0.5.
E N D
IMAGE restoratıon Robot Vision Prof. Dr. Hasan OCAK
EXAMPLE: Inverse fılterıng İdeal Bölütleme Original Image Blurred Image Restored with H -1(u, v) Blurred with Gaussian σ = 0.5
EXAMPLE: Inverse fılterıng İdeal Bölütleme Original Image Blurred Image Restored with H -1(u, v) Blurred with Gaussian σ = 1
EXAMPLE: Inverse fılterıng İdeal Bölütleme Original Image Blurred Image Restored with H -1(u, v) Blurred with Gaussian σ = 2 A small amount of noise saturates the inverse filter
Pseudo Inverse fılterıng • Identify regions where H (u, v) is close to zero and set the inverse filter’s response to zero at those frequencies. • This will help reduce noise amplification.
APPLICATIOn: readıng lıcense plate ALGORITHM: • Rotate image so that blur is horizontal • Estimate length of blur • Compute and apply Wiener filter • Optimize over values of K
perıodıc noıse reductıon Magnitude Spectrum Original Image Band-reject Filter Restored Image