1 / 42

Elos e Juntas

Elos e Juntas. Elos. Juntas:. 2 GDL’s. Elos e Juntas. Efetuador Final. Base do Robô. Denavit – Hartenberg Detalhes e Exemplos. DENAVIT-HARTENBERG REPRESENTAÇÃO Símbolo e Terminologias :. Chapter 2 Robot Kinematics: Position Analysis. ⊙  : rotação em torno do eixo z .

kohana
Download Presentation

Elos e Juntas

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Elos e Juntas

  2. Elos Juntas: 2 GDL’s Elos e Juntas Efetuador Final Base do Robô

  3. Denavit – HartenbergDetalhes e Exemplos

  4. DENAVIT-HARTENBERG REPRESENTAÇÃO Símbolo e Terminologias: Chapter 2Robot Kinematics: Position Analysis ⊙: rotaçãoemtorno do eixoz. ⊙d : Distânciasobre o eixoz. ⊙a : Comprimento de cada normal comum(offset d Junta). ⊙ : Ângulo entre 2 eixoszsuccessivos (torção de Junta)  Só edsãovariaveis de junta.

  5. Juntas U Elos S Eixos Zaligned with joint

  6. Eixos Xaligned with outgoing limb

  7. EixosYisorthogonal

  8. As Juntas sãonumeradas e represantadashierariquicamente Ui-1é anterior a Ui

  9. O Parâmetro ai-1 é o comprimento anterior a junta Ui-1

  10. O Ângulo da Junta, qi, é a rotação entre xi-1 e xi em torno do eixo zi-1

  11. A TORÇÃO do elo, ai-1, é uma rotação do eixo zi em torno do eixo xi-1 em relação ao eixo z i-1

  12. Offset de Elo, di-1, especifica a distância ao longo do eixo zi-1 (rotacionado de ai-1) a partir do eixo xi-1 ao eixo xi .

  13. PROCEDIMENTOS DA REPRESENTAÇÃO DE DENAVIT-HARTENBERG • Ponto de partida: • Atribuir um número de junta npara a junta. • Atribuir um sistema de refêrencia local a cada junta. • Os eixosYnãosãousadosnarepresentação D-H.

  14. REPRESENTAÇÃO de DENAVIT-HARTENBERG Procedimentos para atribuir um sistema de referencia local para cada junta: • ٭ Todas as juntas são representadas por eixos z. • (regra da mão direita para junta rotacional , movimento linear para junta prismatica) • A normal comum é uma linha mutuamente perpendicular a dois eixos reversos. • Juntas com eixos z paralelos apresentam um numero infinito de retas “normal comum”. • Eixos z que se interceptam de duas juntas successivas apresentam normal comum com compprimento =0 .

  15. REPRESENTAÇÃO de DENAVIT-HARTENBERG • Os movimentosnecessáriosparair de um sistema de referenciapara o próximo. Chapter 2Robot Kinematics: Position Analysis (I)Rotação em torno do eixo zn estabelece um n+1. (Coplanar) (II)Translação ao longo do eixo zn estabelece a distância dn+1 que faz xn e xn+1colineares. (III)Translação ao longo do eixo xn-ax estabelece a distância an+1 to bring the origins of xn+1 together. (IV)Rotatezn-axis about xn+1 axis an angle of n+1 to align zn-axis with zn+1-axis.

  16. Denavit - Hartenberg Parameters – a general explanation

  17. Denavit-Hartenberg Notation Only  anddare joint variables Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) d i X(i -1)  i ( i - 1) • IDEA: Each joint is assigned a coordinate frame. • Using the Denavit-Hartenberg notation, you need 4 parameters to describe how a frame (i) relates to a previous frame ( i -1 ). • THE PARAMETERS/VARIABLES: , a , d,  ⊙ : A rotation about the z-axis. ⊙d : The distance on the z-axis. ⊙a : The length of each common normal (Joint offset). ⊙ : The angle between two successive z-axes (Joint twist)

  18. The a(i-1)Parameter You can align the two axis just using the 4 parameters Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) • 1) a(i-1) • Technical Definition: a(i-1) is the length of theperpendicular between the joint axes. • The joint axes are the axes around which revolution takes place which are the Z(i-1) and Z(i) axes. • These two axes can be viewed as lines in space. • The common perpendicular is the shortest line between the two axis-lines and is perpendicular to both axis-lines.

  19. Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) The alphaa(i-1)Parameter a(i-1) cont... Visual Approach - “A way to visualize the link parameter a(i-1) is to imagine an expanding cylinder whose axis is the Z(i-1) axis - when the cylinder just touches the joint axis i the radius of the cylinder is equal to a(i-1).” (Manipulator Kinematics) ⊙ : A rotation about the z-axis. ⊙d : The distance on the z-axis. ⊙a : The length of each common normal (Joint offset). ⊙ : The angle between two successive z-axes (Joint twist)

  20. Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) • It’s Usually on the Diagram Approach - • If the diagram already specifies the various coordinate frames, then the common perpendicular is usually the X(i-1) axis. • So a(i-1) is just the displacement along the X(i-1) to move from the (i-1) frame to the i frame. • If the link is prismatic, then a(i-1) is a variable, not a parameter. ⊙ : A rotation about the z-axis. ⊙d : The distance on the z-axis. ⊙a : The length of each common normal (Joint offset). ⊙ : The angle between two successive z-axes (Joint twist)

  21. Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) The (i-1) Parameter 2)(i-1) Technical Definition: Amount of rotation around the common perpendicular so that the joint axes are parallel. i.e. How much you have to rotate around the X(i-1) axis so that the Z(i-1) is pointing in the same direction as the Zi axis. Positive rotation follows the right hand rule.

  22. Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) The d(i-1)Parameter 3) d(i-1) Technical Definition: The displacement along the Zi axis needed to align the a(i-1) common perpendicular to the aicommon perpendicular. In other words, displacement along the Zi to align the X(i-1) and Xi axes. 4)  i Amount of rotation around the Zi axis needed to align theX(i-1) axis with the Xi axis. The i Parameter The same table as last slide

  23. Z(i - 1) Y(i -1) Y i Z i X i a i a(i - 1 ) di X(i -1)  i ( i - 1) The Denavit-Hartenberg Matrix Just like the Homogeneous Matrix, the Denavit-Hartenberg Matrix is a transformation matrix from one coordinate frame to the next. Using a series of D-H Matrix multiplications and the D-H Parameter table, the final result is a transformation matrix from some frame to your initial frame. Put the transformation here ⊙ : A rotation about the z-axis. ⊙d : The distance on the z-axis. ⊙a : The length of each common normal (Joint offset). ⊙ : The angle between two successive z-axes (Joint twist)

  24. Example:Calculating the final DH matrix with the DH Parameter Table

  25. The DH Parameter Table Y2 Z2 Z1 Z0 X2 d2 X0 X1 Y0 Y1 a0 a1 Example with three Revolute Joints Denavit-Hartenberg Link Parameter Table Notice that the table has two uses: 1) To describe the robot with its variables and parameters. 2) To describe some state of the robot by having a numerical values for the variables. We calculate with respect to previous 

  26. Y2 Z2 Z1 Z0 X2 d2 X0 X1 Y0 Y1 a0 a1 Example with three Revolute Joints Denavit-Hartenberg Link Parameter Table Notice that the table has two uses: 1) To describe the robot with its variables and parameters. 2) To describe some state of the robot by having a numerical values for the variables. The same table as last slide

  27. Y2 Z2 Z1 Z0 X2 d2 X0 X1 Y0 Y1 a0 a1 The same table as last slide Note: T is the D-H matrix with (i-1) = 0 and i = 1. World coordinates tool coordinates These matrices T are calculated in next slide

  28. The same table as last slide This is just a rotation around the Z0 axis This is a translation by a1 and then d2 followed by a rotation around the X2 and Z2 axis This is a translation by a0followed by a rotation around the Z1 axis

  29. Conclusions World coordinates tool coordinates

  30. Forward Kinematics

  31. Forward Kinematics Problem The Situation: You have a robotic arm that starts out aligned with the xo-axis. You tell the first link to move by 1 and the second link to move by 2. The Quest: What is the position of the end of the robotic arm? Solution: 1. Geometric Approach This might be the easiest solution for the simple situation. However, notice that the angles are measured relative to the direction of the previous link. (The first link is the exception. The angle is measured relative to it’s initial position.) For robots with more links and whose arm extends into 3 dimensions the geometry gets much more tedious. 2. Algebraic Approach Involves coordinate transformations.

  32. Example Problem with H matrices: You have a three link arm that starts out aligned in the x-axis. Each link has lengths l1, l2, l3, respectively. You tell the first one to move by 1, and so on as the diagram suggests. Find the Homogeneous matrix to get the position of the yellow dot in the X0Y0 frame. Y3  3 l2 l3 X3 Y2  2 • H = Rz( 1) * Tx1(l1) * Rz( 2) * Tx2(l2) * Rz( 3) • Rotating by 1will put you in the X1Y1frame. • Translate in the along the X1 axis by l1. • Rotating by  2will put you in the X2Y2frame. • and so on until you are in the X3Y3frame. • The position of the yellow dot relative to the X3Y3frameis • (l3, 0). • Multiplying H by that position vector will give you the • coordinates of the yellow point relative the X0Y0frame. X2 Y0 l1 X1  1 Y1 X0

  33. Slight variation on the last solution: Make the yellow dot the origin of a new coordinate X4Y4 frame Y3 Y4 3 2 3 X3 Y2 2 added X2 X4 H = Rz(1) * Tx1(l1) * Rz(2) * Tx2(l2) * Rz(3) * Tx3(l3) This takes you from the X0Y0 frame to the X4Y4 frame. The position of the yellow dot relative to the X4Y4 frame is (0,0). Y0 1 X1 1 Y1 X0

  34. THE INVERSE KINEMATIC SOLUTION OF A ROBOT

  35. THE INVERSE KINEMATIC SOLUTION OF ROBOT • Determine the value of each joint to place the arm at a desired position and orientation. RHS Multiply both sides by A1 -1

  36. THE INVERSE KINEMATIC SOLUTION OF ROBOT A1 -1

  37. THE INVERSE KINEMATIC SOLUTION OF ROBOT We calculate all angles from px, py, a1, a2, ni, oi, etc

  38. INVERSE KINEMATIC PROGRAM:a predictable path on a straight line • A robot has a predictable path on a straight line, • Or an unpredictable path on a straight line. ٭ A predictable path is necessary to recalculate joint variables. (Between 50 to 200 times a second) ٭ To make the robot follow a straight line, it is necessary to break the line into many small sections. ٭ All unnecessary computations should be eliminated. Fig. 2.30 Small sections of movement for straight-line motions

  39. PROBLEMAS com DH

  40. DEGENERAÇÃO E DESTREZA • Degeneração: O robô perde um GDL e, portanto, não pode trabalhar como desejado. ٭ Quando as juntas do robô atingem seu limita físico, ele não consegue mover-se além disso. ٭No ponto médio de seu espaço de trabalho, se os eixos z de duas articulações similares tornam-se colineares. • Destreza : Relacionada a quantidade de pontos onde o robô pode ser posiconado como desejado , mas sem orientá-lo corretamente. Fig. 2.31 Um example de um robô com degeneração de posição.

  41. THE FUNDAMENTAL PROBLEM WITH D-H REPRESENTATION • Defect of D-H presentation: D-H cannot represent any motion about the y-axis, because all motions are about the x- and z-axis. TABLE 2.3 THE PARAMETERS TABLE FOR THE STANFORD ARM Fig. 2.31 The frames of the Stanford Arm.

More Related