1 / 56

Pressure measurements at high temperature: open issues and solutions

Pressure measurements at high temperature: open issues and solutions. Peter I. Dorogokupets Institute of the Earth’s Crust SB RAS, Irkutsk, Russia dor@crust.irk.ru. Acknowledgments. Artem R. Oganov Lab. of Crystallography, ETH Zurich, Switzerland a.oganov@mat.ethz.ch

kolina
Download Presentation

Pressure measurements at high temperature: open issues and solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Pressure measurements at high temperature: open issues and solutions Peter I. Dorogokupets Institute of the Earth’s Crust SB RAS, Irkutsk, Russia dor@crust.irk.ru

  2. Acknowledgments • Artem R. OganovLab. of Crystallography, ETH Zurich, Switzerland a.oganov@mat.ethz.ch • Agnes DewaeleCEA/DPTA Bruyeres-le-Chatel, Franceagnes.dewaele@cea.fr • Paul LoubeyreCEA/DPTA Bruyeres-le-Chatel, France • This work was supported by the Russian Foundation for Basic Research, Grant No. 05-05-64491.

  3. Outline: • Intro. • Thermodynamics: EoS formulation • Best form of the ruby scale • EoS and thermodynamic behavior of Au, C, MgO, NaCl B1, NaCl B2, e-Fe • Cross-check of EoS • Conclusion

  4. Intro • Dorogokupets P.I., Oganov A.R. Ruby pressure scale: revision and alternatives // in Proceedings Joint 20th AIRAPT & 43th EHPRG Int. Conf. on High Pressure Science and Technology, June 27 to July 1, 2005, Karlsruhe, Germany (Forschungszentrum Karlsruhe, Karlsruhe, 2005). • Дорогокупец П.И., Оганов А.Р. Уравнения состояния Al, Au, Cu, Pt, Ta и W и пересмотренная рубиновая шкала давлений // ДАН. 2006. Т. 410. № 2. 239–243.Dorogokupets P.I., Oganov A.R. Equations of State of Al, Au, Cu, Pt, Ta, and W and Revised Ruby Pressure Scale // Doklady Earth Scinces. 2006. V. 410. 1091-1095. • Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M. Quasihydrostatic equation of state of iron above 2 Mbar // Phys. Rev. Letters. 2006. V. 97. Art. No. 215504. • Dorogokupets P.I., Oganov A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures // Phys. Rev. B 2007

  5. Thermodynamics • U0 is the reference energy • E(V) is the cold part • Eqh(V,T) is the quasiharmonic part • Eanh(V,T) is the intrinsic anharmonicity • Eel(V,T) is the electronic contribution • Edef(V,T) is the thermal defects Helmholtz free energy

  6. Cold energy (Vinet form)

  7. Total quasi-harmonic energy: Kut’in model Einstein model

  8. Kut’in model:see Kut’in et al.Rus. J. Phys. Chem.72, 1567, 1998

  9. Intrinsic anharmonicity(Oganov, Dorogokupets, 2004)

  10. Electronic contribution(Zharkov, Kalinin, 1971) Thermal defects contribution

  11. Thermodynamic functions S = –(F/T)V, E=F + TS, P = –(F/V)T, H=E+PV, G=F+PV, CV = (E/T)V, KT= –V(P/V)T, (P/T)V = aKT, CP=CV+a2TVKT, KS=KT+VT(aKT)2/CV,

  12. Hugoniot pressure

  13. We use input data are unbiased by calibration 22 parameters to fit! At zero pressure: • Heat capacity and enthalpy • Thermal expansion coefficient or volume • Adiabatic bulk modulus (from ultrasonic measurements) Temperature interval: from 10 K to melting temperature At high P-T: • Shock wave data

  14. Room T isotherms obtained after fitting: Compared with static compression data with Mao 86 ruby calibration (A=1904, B=7.665) Compared with static compression data with new ruby calibration (A=1885, B=10.4)

  15. Best ruby pressure scale Aleksandrov form

  16. Use of all available data At zero pressure: • Heat capacity and enthalpy • Thermal expansion coefficient or volume • Adiabatic bulk modulus (from ultrasonic measurements) Temperature interval: from 10 K to melting temperature At high P-T: • Shock wave data • PV and PVT measurements (at later stages of refinement)

  17. Results • With our formalism we carry out a simultaneous processing of all the available measurements of the Cp, α, V, Ks and KTat zero pressure, static measurements of V on a room-temperature isotherm and at higher temperatures, shock-wave data, and calculate thermodynamic functions vs.T and P. • Ag, Al, Au, Cu, Pt, Ta, W, Mo, Pb, Fe, MgO, diamond, NaCl EoS have been calculated.

  18. See Dorogokupets, Phys. Rev B, 2007

  19. Comparison of calculated EoS and thermodynamic parameters with data

  20. Au, heat capacity

  21. Au, thermal expansion

  22. Au, bulk moduli

  23. Au, 300 KK0=166.7 GPa, K′=6

  24. Au, 300 KK0=166.7 GPa, K′=6

  25. Diamond, 300 K K0=443.16 GPa, K′=3.777

  26. Diamond, heat capacity

  27. Diamond, bulk moduli

  28. iron

  29. iron

  30. MgO, 300 K K0=160.3 GPa, K′=4.18

  31. MgO, bulk moduli

  32. MgO, bulk moduli

  33. MgO, K0=160.3 GPa, K′=4.18

  34. MgO, Zhang data fittedK0=161 GPa, K′=1.84

  35. NaCl B1, RT-isothermK0=23.9 GPa, K′=5.13

  36. NaCl B1

  37. NaCl B1

  38. NaCl B1, bulk moduli

  39. NaCl B1, bulk moduli

  40. NaCl B2, RT-isothermK0=37.04 GPa, K′=4.99

  41. NaCl B2, RT-isothermK0=37.04 GPa, K′=4.99

  42. Cross-check between EoS at high T • Two materials are compressed together in a high pressure/high temperature apparatus and their V is measured • Pressure given by their EoS are compared • If same pressure, validation of the EoS

  43. Comparison NaCl B2 and e-Fe Within ~7GPa

  44. Au-MgO: Inoue et al. (2006)Phys. Chem. Minerals 33, 106.

More Related