120 likes | 447 Views
LOGARITHM. GRADE X. LOGARITHMS. STANDARD OF COMPETENCY. Be able to solve problems related to exponents, roots, and logarithms. BASE COMPETENCY. To use the rules of exponents, roots, and logarithms . LOGARITHMS. INDICATORS. Changing exponents to be logarithms and vice versa .
E N D
LOGARITHM GRADE X
LOGARITHMS STANDARD OF COMPETENCY Be able to solve problems related to exponents, roots, and logarithms BASE COMPETENCY • To use the rules of exponents, roots, and logarithms
LOGARITHMS INDICATORS • Changing exponents to be logarithms and vice versa. • Using logarithm properties to solve a simple algebraic operation
LOGARITHMS PROBLEM ? 32 = 9 2= ??? 3 Log 9 = 2
LOGARITHMS Base, a>0, a≠1 Value a Log b = c Numerous, b>0
LOGARITHMS Examples : 1. Express into logarithm form A. 23 = 8 C. 3x = 15 B. 25 = 32 D. 3(x+2) = 20 Answer : A. 23= 8 3 = 2Log 8 B. 25= 32 5 = 2Log 32 C. 3x= 15 x = 3Log 15 D. 3(x+2) = 20 x+2 = 3Log 20
LOGARITHMS The LogarithmSFormulae m= aLog b am = b an = c bc = am. an = a m+n n = aLog c aLog(bc) = m + n = aLogb + aLog c aLog(bc) = aLog b + aLog c
LOGARITHMS The Logarithm Formulae aLogbc = aLog b + aLog c aLog (b/c) = aLog b - aLog c aLogbn= n. aLog b a mLog b = (1/m) aLog b aLog a = 1, aLog 1 = 0 aLog b x bLog c = aLog c
LOGARITHMS Examples : 2 Log 16 1. Find the values of the following A. B. C. Answer : A. B. 5 Log 125 Log 0,01 C. Log 0,01 = Log 10-2 = -2. Log 10 = -2.1 = -2 2 Log 16 = 2 Log 24 = 4. 2 Log 2 = 4 5 Log 125 = 5 Log 53 = 3 . 5 Log 5 = 3
LOGARITHMS Examples : 2 Log 3 + 2 Log 8 – 2 Log 6 2. Simplify using logarithm properties ! A. B. Answer : A. B. 3Log 4 + 2.3 Log 2 – 2.3 Log 4 2 Log 3 + 2 Log 8 – 2 Log 6 = 2 Log (3x8) – 2 Log 6 = 2 Log (24/6) = 2 Log 4 = 2 3Log 4 + 2.3 Log 2 – 2.3 Log 4 = 3 Log 4 + 3 Log 22 – 3 Log 42 = 3 Log (4x4) – 3 Log 16 = 3 Log (16/16) = 3 Log 1 = 0
LOGARITHMS EXERCISES • PAGE 55-56 • NO: 1 A, B, C, D, E • 2 A, B, D, E • 3 A, B, E • 4 A, B, C, D • 7 A, C • 8 • 9 A, B, C, D • 11 A, B
LOGARITHMS THANK YOU