180 likes | 257 Views
Remember scientific notation?. (1.2 x 10 -3 )(6.7 x 10 6 ). 8.04. x 10 -3+6. Small #. Big #. 8.04. x 10 3. (8.2 x 10 8 )(6.7 x 10 6 ). 54.94. or 5.494 x 10 1. 5.494 x 10 1. x 10 14. 5.494 x 10 15. (8.2 x 10 -2 )(9.7 x 10 -5 ). 79.54. or 7.954 x 10 1. 7.954 x 10 1.
E N D
(1.2 x 10-3 )(6.7 x 106 ) 8.04 x 10-3+6 Small # Big # 8.04 x 103
(8.2 x 108 )(6.7 x 106 ) 54.94 or 5.494 x 101 5.494 x 101 x 1014 5.494 x 1015
(8.2 x 10-2 )(9.7 x 10-5 ) 79.54 or 7.954 x 101 7.954 x 101 x 10-7 7.954 x 10-6
y = -2x2 - 4 Sketch a graph. none (0,-4) (0,-4) x intercepts: y intercept: vertex: END BEHAVIOR: Means: as x approaches negative infinity, so does y Remember y is f(x)
y = -x2 + 4 Sketch a graph. x intercepts: y intercept: vertex: (2,0)(-2,0) (0,4) (0,4)
y = x3 + 2 Sketch a graph. x intercepts: y intercept: Domain: Range: (-1.26,0) (0,2) (-∞,∞) (-∞,∞)
y = (x-3)2 + 2 Sketch a graph. x intercepts: y intercept: vertex: none (0,11) (3,2)
y = -x4 –x2 + x - 2 Sketch a graph. x intercepts: y intercept: Domain: none (0,-2) (-∞,∞)
y = -x4 –x2 + x - 2 Sketch a graph. x intercepts: y intercept: Domain: none (0,-2) (-∞,∞)
y = x4 y = x2 Sketch a graph. x intercepts: y intercept: Domain: Range: (0,0) (0,0) (-∞,∞) [0,∞)
y = x5 Sketch a graph. x intercepts: y intercept: Domain: Range: (0,0) (0,0) (-∞,∞) (- ∞, ∞)
Factoring Q.F. What methods (tools) do we use to find x intercepts? GCF 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 x2 - x + 12 3x2 - 6x 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 x2 - x + 12 3x2 - 6x 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 x2 - x + 12 3x2 - 6x 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 x2 - x + 12 3x2 - 6x 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 x2 - x + 12 3x2 - 6x (x+ )(x+ ) 6 step method grouping
Factoring What methods (tools) do we use to find x intercepts? GCF 3x2 - 6x x2 - x + 12 2x2 - 11x + 15 x3 + 5x2 – 9x - 45 (x+ )(x+ ) 6 step method grouping 4x2 - 49 difference of perfect squares (2x – 7)(2x + 7)
Factoring a Cubic 8x3 + 27 Step 1: Take the cube root of each term. (2x + 3) Step 2: Square the first term. Multiply the two terms together and change the sign. Square the last term (2x + 3) (4x2 -6x +9)
Factoring a Cubic 27x3 - 64 Step 1: Take the cube root of each term. (3x - 4) Step 2: Square the first term. Multiply the two terms together and change the sign. Square the last term (3x -4 ) (9x2 +12x +16)
Factoring a Cubic 125x3 - 8 +4) (5x -2 ) (25x2 +10x