410 likes | 653 Views
前沿物理漫談系列 -- 之 AMO physics, 原子分子 , 光學物理. 粒子的波動與波動的粒子. 對當前 AMO 物理中幾個重要的研究課題做一淺易的介紹 , 包括 : Precision spectroscopy – 準確到 16 個位數的物理 Laser cooling – 在安靜的世界中聆聽 Matter wave – 看得見的量子力學 Quantum computer – 終極解碼機 Ultra high field laser – 手提箱加速器. 清華大學物理系 劉怡維 2006.4.25.
E N D
前沿物理漫談系列 -- 之AMO physics, 原子分子,光學物理 粒子的波動與波動的粒子 對當前AMO物理中幾個重要的研究課題做一淺易的介紹,包括: Precision spectroscopy –準確到16個位數的物理 Laser cooling – 在安靜的世界中聆聽 Matter wave – 看得見的量子力學 Quantum computer – 終極解碼機 Ultra high field laser – 手提箱加速器 清華大學物理系 劉怡維 2006.4.25
Atomic Structure Of Hydrogen 2P3/2 J=3/2 n=2 2P1/2 J=1/2 Lamb Shift 2S1/2 J=1/2 1058MHZ S state n=1 P state 2S1/2 J=1/2 Gross Structure Fine Structure (L,S coupling) QED
150年來的氫原子光譜量測 21st century
Bound QED的理論限制 以最簡單的原子系統為檢驗 氫原子(ep) 1S-2S躍遷中的 1S Lamb Shift (所有能階中最大): 目前理論的極限所在 不確定的 <r2 > (質子的電荷分布半徑)
超精確頻率量測 • f(1S-2S) = 2 466 061 102 474 851(25) Hz • L1S = 8 172.840(22) MHz By T. Hansch (Max-Planck-Institut für Quantenoptik )
物理定律的對稱守恆 C: 電荷 (q-q) P: 宇稱(r -r) T: 時間(t -t) P 不守恆: 李、楊、吳 T P CP守恆 K0L 2 目前確實觀察到的CP violation 的物理現象 CP 不守恆 B 35 year later…..The new one, from B factory(Belle, BABAR) CPT ????? Can we test it?
Anti-hydrogen ATRAP and ATHENA at CERN Test CPT and Gravity (a tiny component of the force of gravity might be reversed for antimatter. Such a discovery would profoundly revise our understanding of gravity.)
How can we measure it so good? • It is measured using Primary standard • 精確度最終將受制於量測時所使用的標準(尺) • 使用定義時間的原子鐘來量頻率才能得到最佳精確度 Cesium clock Laser Primary frequency standard (The best frequency ruler) Counter Optical Frequency Comb !!
Conventional Frequency Chain Optical frequency Iodine (532 nm) 10 or more step Primary frequency standard Cs Clock (9.2GHz)
Direct Link with Optical Frequency Comb Cs clock on Satellite Optical frequency (Visible to NIR) GPS Receiver Optical frequency Comb Mode-lock Laser Nonlinear fiber Short pulse simultaneously output discrete frequency components in a wide range. Each one has a equal frequency spacing and with coherence Expand the range even further (From NIR to Green)
Mode-lock laser as frequency comb 輸出頻率為 與原子鐘同步 n=1,2,3….. 所有的輸出頻率與原子鐘同步 許多不同頻率的光形成的建設性干涉 Please visit Prof. Shy’s lab at NTHU phys
光壓 Laser Red-detuned 紅調變 比共振頻率低 f=(E2-E1)/h E2 要將原子減慢我們必須給與原子速度本身反方向的動量 所以光壓的作用必須是有選擇性的velocity selective E1 都卜勒效應 吸收機率低 吸收機率高
Cooling and Trapping Cooling: 在六個方向上加上雷射光就可以把原子各方向上的速度減慢, 也就達到冷卻的目的,形成所謂的光學焦糖optical molasses Trapping: 利用磁力形成位能井來捕捉 原子本身的磁偶極 How cool can it be? 10-6 K !!!! 相同的原理除可以運用在中性原子上外,也可以用在帶電的離子上
半夜裡一根掉到地上都聽得到 f 頻率穩定 頻率不穩定, 不準度大 ff 碰撞 粒子 溫度高 P大 x 小 波的性質變強 x大 Wave function 重疊 溫度高 P小 x 大 重要應用: 精密光譜學,精密測量, 物質波干涉, 原子鐘, 量子電腦
Atomic clock 時間標準Current primary standard: atomic Cs (銫)ground state hyperfine splitting 9.1926GHz (銫原子鐘) (光速為定義值 c=v/t, )所以長度標準為光走1/c秒的距離(時間標準-> 長度標準)
銫原子噴泉 在重力的方向上 利用光與重力的力量 將冷卻的原子團形成一個速度極慢的原子束 9.2GHz 微波
Fermions and Bosons • Fermions: S=N/2, Pauli Exclusion Principle • Bosons: S=N, Bose-Einstein statistic
Bose Einstein Condensation-BEC All the particles are in the same state -> BEC -> superfluid Particles must be cold to be the same |p momentum> sate (That is, the wavefunction overlapping) For He4, it is 2.2K 室溫原子蒸氣 -> laser cooling -> 蒸發冷卻 -> BEC 0.4uK (Rb) 把熱原子趕走 留下較冷原子 重新到達較低的這平衡溫度
Atom laser Coherent atomic wave emitted from BEC. It is just like laser emits coherent photon Vortex Lattice Various quantized rotation modes of BEC What’s next? Molecule BEC? Rb2 by JILA, Li2 by Innsbruck
Qbit and Quantum Mechanic • Classical computation: bits, Newtonian mechanic step by step, 序列式 • Quantum: qbits, quantum mechanic parallel, 平行式 |1> 古典 : |0> or |1> 量子 : a|0> +b|1> coherent superposition 不是|1>,也不是|0>,而是兩個同時存在 |0>
QC 的基本架構 一個二能階系統 Data qbit Entangle 糾纏 Control Qbit Data IO 1 bit 記憶體 Bus (CPU) Data IO 1 bit 記憶體 Control Data IO 1 bit 記憶體 ….. Data Program Entangled state 糾纏態 |Cqbit, qbit> CNOT Controlled NOT gate
Linear ion trap as QC 各單一離子即是一個qbit 各離子透過庫倫作用力而交互作用 整體的震動模式 ---phonon 即可作為bus, control qbit, 必須是量子化的 |1,1> CNOT |1,0> |11> |01> |10> |10> |01> |11> |00> |00> 整個狀態表示為: |Q1>|Q2>|Q3> |Q3>… |Vcm> =| Q1 Q2 Q3 ….Vcm> |0,1> Can be realized using three steps (Monroe et al) |0,0>
Application of QCRSA 密碼解密 加密 encoding 解密 decoding 公開的加密鑰key 私人的解密鑰key 訊息 訊息 加密後的密碼訊息 兩個很大質數的乘積 要破解密碼就要獲得解密鑰d, 也就是要對N 進行因數分解
QC 與因數分解 f(x) 所有數字的superposition x T 若N 為質數,T=N-1 若N不為質數T<N-1, 且可由T直接得到p, q 干涉 多狹縫的干涉圖形 即是多狹縫的Fourier transform 所以要對N進行因數分解,即等同於對f(x)進行傅立葉轉換 (尋找周期大小)
主要困難: 1.整體震動模式必須是基態v=0 2. 形成的coherent superposition必須維持足夠時間,同調不被破壞 3. IO的正確性 4. 誤差修正的能力與運算法
If QC is realized, can we still have reliable communication?-Quantum cryptography • No cloning – Quantum state can not be clone faithfully Not equal, nor orthogonal Only true, if
Particle accelerator Tevatron SLAC
WAKE-FIELD ACCELERATION 0 to 60MeV in mm RELATIVISTIC OPTICS F=qvxB
Several possible applications • Cheap proton source for Curing cancer • Ignite fusion at power planet