570 likes | 1.16k Views
2. Overview. Multiple imputation is a strategy for dealing with data sets with missing values. You replace each missing value with a set of plausible values that represent the uncertainty about the right value to impute. You create multiple imputed data sets, analyze them with standard analyse
E N D
1. 1
2. 2 Overview
3. 3 Overview
4. 4 Overview
5. 5 Multiple Imputation Strategy
6. 6 Steps in Multiple Imputation Inference
7. 7 Multiple Imputation Methods
8. 8 Basic Assumption: Missing at Random
9. 9 Getting Started
10. 10 Getting Started
11. 11 Getting Started
12. 12 Getting Started
13. 13 Getting Started
14. 14 Getting Started
15. 15 Getting Started
16. 16 Monotone Missing Patterns
17. 17 Example: Regression Method
18. 18 Example: Regression Method
19. 19 Example: Regression Method
20. 20 Example: Regression Method
21. 21 Monotone Missing Patterns
22. 22 Monotone Missing Patterns
23. 23 Monotone Missing Patterns
24. 24 Example: Propensity Method
25. 25 Example: Propensity Method
26. 26 Example: Propensity Method
27. 27 Single Imputation with EM
28. 28 Single Imputation with EM
29. 29 Single Imputation with EM
30. 30 Markov Chain Monte Carlo (MCMC)
31. 31 Markov Chain Monte Carlo (MCMC)
32. 32 Markov Chain Monte Carlo (MCMC)
33. 33 Markov Chain Monte Carlo (MCMC)
34. 34 Markov Chain Monte Carlo (MCMC)
35. 35 Markov Chain Monte Carlo (MCMC)
36. 36 Markov Chain Monte Carlo (MCMC)
37. 37 Markov Chain Monte Carlo (MCMC)
38. 38 Markov Chain Monte Carlo (MCMC)
39. 39 Markov Chain Monte Carlo (MCMC)
40. 40 Markov Chain Monte Carlo (MCMC)
41. 41 Markov Chain Monte Carlo (MCMC)
42. 42 Markov Chain Monte Carlo (MCMC)
43. 43 PROC MIANALYZE
44. 44 PROC MIANALYZE
45. 45 PROC MIANALYZE
46. 46 PROC MIANALYZE
47. 47 PROC MIANALYZE
48. 48 PROC MIANALYZE
49. 49 PROC MIANALYZE
50. 50 PROC MIANALYZE
51. 51 PROC MIANALYZE
52. 52 For More Information
53. 53 More Websites
54. 54 More Websites