1 / 59

OSPFv3

OSPFv3. CIS 185 Advanced Routing (CCNP 1) Spring 2006 Rick Graziani Based on Chapter 4: Dynamic Routing Protocols, Routing TCP/IP 2 nd Edition, Jeff Doyle and Jennifer Carroll. OSPFv3 Introduction. OSPFv2 could have been modified for IPv6 with new or modified LSAs.

kristen
Download Presentation

OSPFv3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. OSPFv3 CIS 185 Advanced Routing (CCNP 1) Spring 2006 Rick Graziani Based on Chapter 4: Dynamic Routing Protocols, Routing TCP/IP 2nd Edition, Jeff Doyle and Jennifer Carroll

  2. OSPFv3 Introduction • OSPFv2 could have been modified for IPv6 with new or modified LSAs. • OSPFv2 developed in 1980’s when: • router performance was low • memory expensive • IETF decided this was an opportunity to improve the protocol itself. Rick Graziani graziani@cabrillo.edu

  3. Operation of OSPFv3 • OSPFv3 specified in RFC 2740 • OSPFv3 uses same fundamental mechanisms as OSPFv2 including: • SPF algorithm • Flooding • DR election • Areas • Timers • Metrics • Not backwards compatible with OSPFv2. • If running both IPv4 and IPv6, must run both OSPFv2 and OSPFv3 (discussions underway to add IPv4 support to OSPv3). • Primary difference is with LSA formats. Rick Graziani graziani@cabrillo.edu

  4. Differences between OSPFv2 and OSPFv3 • Per link processing • IPv6 interfaces can have multiple addresses/subnets • Two interfaces belonging to same link, but different subnets can communicate. • Removal of addressing semantics • Router LSAs and network LSAs do not carry IPv6 addresses, another LSA for this. • 32 bit Router-ID, Area-ID and LSA IDs still maintained in OSPFv3, but are not IPv4 address in OSPFv3 • Flooding Scope includes link local • OSPFv3 retains flooding scope of routing domain and areas. • OSPFv3 includes link-local flooding scope, for information only relevant to neighbors on a single link, not beyond any attached router. Rick Graziani graziani@cabrillo.edu

  5. Differences between OSPFv2 and OSPFv3 • Use of link local addresses • Similar to OSPFv2, OSPFv3 packets only has local scope. • OSPFv3 uses a router’s link local IPv6 addresses, which begin with FF80::/10. • Support for multiple instances per link • Applications where multiple OSPF routers can be attached to a single broadcast link but not form an adjacency. • Example: Network Access Point (NAP), where the NAP Router A will form an adjacency with only Company A router, and NAP Router B will form an adjacency with only Company B router. • OPSFv3 allows for multiple instances per link. • Can be done with OSPFv2 using authentication, but this causes a lot of authentication failures. Rick Graziani graziani@cabrillo.edu

  6. Differences between OSPFv2 and OSPFv3 • Removal of OSPF-specific authentication • OSPFv3 uses IPv6 authentication extension header. Rick Graziani graziani@cabrillo.edu

  7. OSPFv3 Messages • OSPFv2 and OSPFv3 same protocol number of 89. • Multicast Addresses: IPv4IPv6 AllSPFRouters 224.0.0.5 FF02::5 AllDRrouters 224.0.0.6 FF02::6 • OSPFv2 and OSPv3 same message types, with some changes (won’t go into detail here): • Hello • Database Description • Link State Request • Link State Update • Link State Acknowledgment Rick Graziani graziani@cabrillo.edu

  8. Two renamed LSAs Interarea prefix LSAs for area border routers (ABRs) (type 3): • Type 3 LSAs advertise internal networks to routers in other areas (interarea routes). • Type 3 LSAs may represent a single network or a set of networks summarized into one advertisement. • Only ABRs generate summary LSAs. • In OSPF for IPv6, addresses for these LSAs are expressed as prefix, prefix length instead of address, mask. • The default route is expressed as a prefix with length 0. Rick Graziani graziani@cabrillo.edu

  9. Two renamed LSAs Interarea router LSAs for autonomous system boundary routers (ASBRs) (type 4): • Type 4 LSAs advertise the location of an ASBR. • Routers that are trying to reach an external network use these advertisements to determine the best path to the next hop. • ASBRs generate type 4 LSAs. Rick Graziani graziani@cabrillo.edu

  10. Two new LSAs Link LSAs (type 8): • Information which is only significant to two directly connected neighbors. • Type 8 LSAs have link-local flooding scope and are never flooded beyond the link with which they are associated. • Link LSAs provide the link-local address of the router to all other routers attached to the link. • Link LSAs also inform other routers attached to the link of a list of IPv6 prefixes to associate with the link, and allow the router to assert a collection of options bits to associate with the network LSA that will be originated for the link. Rick Graziani graziani@cabrillo.edu

  11. Two new LSAs Intra-area prefix LSAs (type 9): • Carries Prefixes for a referenced Link State ID. • Prefix changes in OSPFv2 (sent in Router and Network LSAs) causes an SPF recalculation), but because they do not affect SPF tree, does not cause SPF recalculation in OSPFv3. • Makes OSPFv3 more scalable for large networks with large number of frequently changing prefixes. Rick Graziani graziani@cabrillo.edu

  12. Configuring OSPFv3: Lab 8.1 Rick Graziani graziani@cabrillo.edu

  13. Objectives • Configure a static IPv6 address on an interface • Change the default-link local address on an interface • Configure an EUI-64 IPv6 address on an interface • Enable IPv6 routing and CEF • Configure and verify single-area OSPFv3 operation Rick Graziani graziani@cabrillo.edu

  14. Step 2: Configuring Loopback interfaces • IPv6 addresses let you put in the mask length with a /mask, rather than typing the whole mask out in hexadecimal (imagine typing up to 128 bits worth of 1’s). • You also can put in the abbreviated form of an IPv6 address. • You can abbreviate any continuous group of 0’s with “::”. You can only use this abbreviation once per address. R1(config)# interface loopback0 R1(config-if)# ip address 10.1.1.1 255.255.255.0 R1(config-if)# ipv6 address FEC0::1:1/112 R2(config)# interface loopback0 R2(config-if)# ip address 10.1.2.1 255.255.255.0 R2(config-if)# ipv6 address FEC0::2:1/112 R3(config)# interface loopback0 R3(config-if)# ip address 10.1.3.1 255.255.255.0 R3(config-if)# ipv6 address FEC0::3:1/112!Lab has typo here Rick Graziani graziani@cabrillo.edu

  15. Comparing IPv4 and IPv6 configuration • If you accidentally put the wrong IPv6 address on an interface, make sure you take it off with the no version of the command you entered. • Unlike IPv4 addresses, where the ip address command overwrites the existing address, multiple IPv6 addresses can exist on an interface. • Putting in the command ipv6 address multiple times will add more addresses, not replace them. • Also, notice that we put both an IPv4 and IPv6 address on the same interface, and neither conflict with each other. • This is because they are different layer 3 protocols and they run independently. R1(config)# interface loopback0 R1(config-if)# ip address 10.1.1.1 255.255.255.0 R1(config-if)# ipv6 address FEC0::1:1/112 Rick Graziani graziani@cabrillo.edu

  16. Step 3: Configuring Static IPv6 Addresses R1(config)# interface serial0/0/0 R1(config-if)# ipv6 address FEC0::12:1/112 R1(config-if)# clockrate 64000 R1(config-if)# no shutdown R1(config)# interface s0/0/1 R1(config-if)# ipv6 address FEC0::13:1/112 R1(config-if)# clockrate 64000 R1(config-if)# no shutdown R2(config)# interface serial0/0/0 R2(config-if)# ipv6 address FEC0::12:2/112 R2(config-if)# no shutdown R3(config)# interface serial0/0/0 R3(config-if)# ipv6 address FEC0::13:3/112 R3(config-if)# clockrate 64000 R3(config-if)# no shutdown Rick Graziani graziani@cabrillo.edu

  17. Verifying Static IPv6 Addresses R1#ping FEC0::12:2 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::12:2, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R1#ping FEC0::13:3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::13:3, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R2#ping FEC0::12:1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::12:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R3#ping FEC0::13:1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::13:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms Rick Graziani graziani@cabrillo.edu

  18. Step 4: Changing the Link-Local Address on an Interface • Notice that in addition to the address you already configured, there is a link local address starting with FE80. • Your actual address may vary. • There is no subnet mask on link-local addresses, because they are not routed; hence the term “link-local”. • To configure this, use the command ipv6 address address link-local. R1#show ipv6 interface ser 0/0/0 Serial0/0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::21B:CFF:FED0:89A8 Global unicast address(es): FEC0::12:1, subnet is FEC0::12:0/112 <output omitted> Rick Graziani graziani@cabrillo.edu

  19. R2 Link-local Address • Notice that in addition to the address you already configured, there is a link local address starting with FE80. R2#show ipv6 inter serial 0/0/0 Serial0/0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::21B:CFF:FED0:78E8 Global unicast address(es): FEC0::12:2, subnet is FEC0::12:0/112 <output omitted> Rick Graziani graziani@cabrillo.edu

  20. Configuring Link-local Address • You can change this on the link between R1 and R2 by putting the link-local address FE80::1 on R1 and FE80::2 on R2. R1(config)# interface serial0/0/0 R1(config-if)# ipv6 address FE80::1 link-local R2(config)# interface serial0/0/0 R2(config-if)# ipv6 address FE80::2 link-local Rick Graziani graziani@cabrillo.edu

  21. Verifying Link-local address R1#ping FE80::2 Output Interface: Serial0/0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FE80::2, timeout is 2 seconds: Packet sent with a source address of FE80::1 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms • Verify that you can ping the link local address on the other side. • When pinging link local addresses, you must specify an outgoing interface because the addresses are not routed and not in the routing table. R2#ping FE80::1 Output Interface: Serial0/0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FE80::1, timeout is 2 seconds: Packet sent with a source address of FE80::2 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms Rick Graziani graziani@cabrillo.edu

  22. Verifying new addresses R1#show ipv6 interface serial 0/0/0 Serial0/0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::1 <output omitted> R2#show ipv6 interface serial 0/0/0 Serial0/0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::2 <output omitted> Rick Graziani graziani@cabrillo.edu

  23. Step 5: Configuring EUI-64 Addresses • EUI-64 IPv6 addresses are addresses where the first 64 bits are the network portion of the address and specified, and the second 64 bits are the host portion of the address and automatically generated by the device. • Configure this on the FastEthernet interfaces of R2 and R3 with the subnet given in the diagram. • Also, make sure you put a no shutdown on the interfaces. R2(config)# interface fastethernet0/0 R2(config-if)# ipv6 address FEC0:23::/64 eui-64 R2(config-if)# no shutdown R3(config)# interface fastethernet0/0 R3(config-if)# ipv6 address FEC0:23::/64 eui-64 R3(config-if)# no shutdown Rick Graziani graziani@cabrillo.edu

  24. EUI-64 Addresses • EUI-64 mechanism: • takes the 48-bit Media Access Control (MAC) address of the interface—which can normally be assumed to be globally unique • converts it into a 64-bit Interface ID by inserting a reserved 16-bit value of 0xFFFE into the middle of the MAC address • "flipping" the Universal/Local (U/L) bit of the MAC address to 1 (Universal). R2#show ipv6 inter brief FastEthernet0/0 [up/up] FE80::21B:CFF:FED0:78E8 FEC0:23::21B:CFF:FED0:78E8 R2#show inter fa 0/0 FastEthernet0/0 is up, line protocol is up Hardware is MV96340 Ethernet, address is 001b.0cd0.78e8 <output omitted> Rick Graziani graziani@cabrillo.edu

  25. Verifying EUI-64 Addresses R2#ping fec0:23::21b:cff:fec2:84a0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0:23::21B:CFF:FEC2:84A0, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/4 ms Rick Graziani graziani@cabrillo.edu

  26. Step 6: Enabling IPv6 Routing and CEF • As of the time of this writing, the current IOS version has IPv6 routing and CEF disabled by default. • To enable IPv6 routing, use the global configuration command ipv6 unicast-routing. • To enable IPv6 CEF, use the command ipv6 cef. R1(config)# ipv6 unicast-routing R1(config)# ipv6 cef R2(config)# ipv6 unicast-routing R2(config)# ipv6 cef R3(config)# ipv6 unicast-routing R3(config)# ipv6 cef Rick Graziani graziani@cabrillo.edu

  27. Step 7: Setting up OSPv3 • Once you add the interfaces to the OSPF process with this command, the OSPF process will start automatically. • If the adjacencies don’t come up after a reasonable period of time, troubleshoot usingthe debug commands debug ipv6 ospf adjacencyand debug ipv6 packet. R1(config)#interface loopback0 R1(config-if)#ipv6 ospf 1 area 0 R1(config)#interface serial0/0/0 R1(config-if)#ipv6 ospf 1 area 0 R1(config)#interface serial0/0/1 R1(config-if)#ipv6 ospf 1 area 0 OSPFv3 is configured on the interface instead of the network command in OSPFv2. Allows for more control over which interfaces are enabled for OSPF without the use of wildcard masks. Rick Graziani graziani@cabrillo.edu

  28. Configuring R2 and R3 R2(config)#interface loopback0 R2(config-if)#ipv6 ospf 1 area 0 R2(config)#interface serial0/0/0 R2(config-if)#ipv6 ospf 1 area 0 R2(config)#interface fastethernet0/0 R2(config-if)#ipv6 ospf 1 area 0 R3(config)#interface loopback0 R3(config-if)#ipv6 ospf 1 area 0 R3(config-if)#interface serial0/0/0 R3(config-if)#ipv6 ospf 1 area 0 R3(config-if)#interface fastethernet0/0 R3(config-if)#ipv6 ospf 1 area 0 Rick Graziani graziani@cabrillo.edu

  29. Verify OSPFv3 Neighbors • The router IDs for each router are created the same way that they are in OSPFv2. • Without any IPv4 addresses on the router, the OSPFv3 process will not start unless you manually set the router IDs. • This is why the loopback interfaces have both IPv4 and IPv6 addresses. R1#show ipv6 ospf neighbor Neighbor ID Pri State Dead Time Interface ID Interface 10.1.3.1 1 FULL/ - 00:00:39 6 Serial0/0/1 10.1.2.1 1 FULL/ - 00:00:34 6 Serial0/0/0 R2#show ipv6 ospf neighbor Neighbor ID Pri State Dead Time Interface ID Interface 10.1.3.1 1 FULL/DR 00:00:39 4 FastEthernet0/0 10.1.1.1 1 FULL/ - 00:00:32 6 Serial0/0/0 R3#show ipv6 ospf neighbor Neighbor ID Pri State Dead Time Interface ID Interface 10.1.2.1 1 FULL/BDR 00:00:39 4 FastEthernet0/0 10.1.1.1 1 FULL/ - 00:00:39 7 Serial0/0/0 Rick Graziani graziani@cabrillo.edu

  30. Verifying with show ipv6 route R2#show ipv6 route IPv6 Routing Table - 11 entries Codes: C - Connected, L - Local, S - Static, R - RIP, B - BGP U - Per-user Static route I1 - ISIS L1, I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary O - OSPF intra, OI - OSPF inter, OE1 - OSPF ext 1, OE2 - OSPF ext 2 ON1 - OSPF NSSA ext 1, ON2 - OSPF NSSA ext 2 L FE80::/10 [0/0] via ::, Null0 O FEC0::1:1/128 [110/64] via FE80::1, Serial0/0/0 C FEC0::2:0/112 [0/0] via ::, Loopback0 L FEC0::2:1/128 [0/0] via ::, Loopback0 O FEC0::3:1/128 [110/1] via FE80::21B:CFF:FEC2:84A0, FastEthernet0/0 C FEC0::12:0/112 [0/0] via ::, Serial0/0/0 L FEC0::12:2/128 [0/0] via ::, Serial0/0/0 O FEC0::13:0/112 [110/65] via FE80::21B:CFF:FEC2:84A0, FastEthernet0/0 C FEC0:23::/64 [0/0] via ::, FastEthernet0/0 L FEC0:23::21B:CFF:FED0:78E8/128 [0/0] via ::, FastEthernet0/0 L FF00::/8 [0/0] via ::, Null0 Rick Graziani graziani@cabrillo.edu

  31. R2#show ipv6 ospf interface FastEthernet0/0 is up, line protocol is up Link Local Address FE80::21B:CFF:FED0:78E8, Interface ID 4 Area 0, Process ID 1, Instance ID 0, Router ID 10.1.2.1 Network Type BROADCAST, Cost: 1 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 10.1.2.1, local address FE80::21B:CFF:FED0:78E8 Backup Designated router (ID) 10.1.3.1, local address FE80::21B:CFF:FEC2:84A0 Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:00 Index 1/3/3, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 1, maximum is 4 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.1.3.1 (Backup Designated Router) Suppress hello for 0 neighbor(s) Serial0/0/0 is up, line protocol is up Link Local Address FE80::2, Interface ID 6 Area 0, Process ID 1, Instance ID 0, Router ID 10.1.2.1 Network Type POINT_TO_POINT, Cost: 64 Transmit Delay is 1 sec, State POINT_TO_POINT, Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:03 Index 1/2/2, flood queue length 0 Next 0x0(0)/0x0(0)/0x0(0) Last flood scan length is 1, maximum is 4 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 1, Adjacent neighbor count is 1 Adjacent with neighbor 10.1.1.1 Suppress hello for 0 neighbor(s) Loopback0 is up, line protocol is up Link Local Address FE80::21B:CFF:FED0:78E8, Interface ID 13 Area 0, Process ID 1, Instance ID 0, Router ID 10.1.2.1 Network Type LOOPBACK, Cost: 1 Loopback interface is treated as a stub Host Rick Graziani graziani@cabrillo.edu

  32. Verify: Ping Global Addresses R1#ping fec0::3:1 !Loopback on R3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::3:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R1#ping fec0:23::21b:cff:fec2:84a0 !FastEthernet on R3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0:23::21B:CFF:FEC2:84A0, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R1# Rick Graziani graziani@cabrillo.edu

  33. Can only ping local link-local interfaces R1#ping fe80::21b:cff:fec2:84a0 !Link-local interface on R2’s Ethernet link Output Interface: serial0/0/0 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FE80::21B:CFF:FEC2:84A0, timeout is 2 seconds: Packet sent with a source address of FE80::1 ...T. Success rate is 0 percent (0/5) R1#ping fe80::21b:cff:fec2:84a0 !Link-local on interface on R3’s serial link with R1 Output Interface: serial0/0/1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FE80::21B:CFF:FEC2:84A0, timeout is 2 seconds: Packet sent with a source address of FE80::21B:CFF:FED0:89A8 !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 28/28/28 ms R1# Rick Graziani graziani@cabrillo.edu

  34. Summarization • The commands available for OSPFv3 are very close to the commands available for OSPFv2. • On R2, add in two loopback interfaces, with the addresses FEC0:500::100:1 /112 and FEC0:500::200:1 /112. • Add both of these interfaces to the OSPF process in area 500. • Summarize area 500 to FEC0:500:: /64. • To enter the OSPF configuration prompt, use the command ipv6 router ospf process. • Once in the prompt, use the area rangecommand to summarize the address. R2(config)#inter loop 100 R2(config-if)#ipv6 add fec0:500::100:1/112 R2(config-if)#ipv6 ospf 1 area 500 R2(config)#inter loop 200 R2(config-if)#ipv6 add fec0:500::200:1/112 R2(config-if)#ipv6 ospf 1 area 500 R2(config)#ipv6 router ospf 1 !First time needed to use router mode R2(config-rtr)#area 500 range fec0:500::/64 Rick Graziani graziani@cabrillo.edu

  35. Verify Summarization R3#show ipv6 route <output omitted> OI FEC0:500::/64 [110/1] via FE80::21B:CFF:FED0:78E8, FastEthernet0/0 Rick Graziani graziani@cabrillo.edu

  36. Lab 8.2: Using Manual IPv6 Tunnels Rick Graziani graziani@cabrillo.edu

  37. Objectives • Configure EIGRP for IPv4 • Create a manual IPv6 tunnel • Configure OSPFv3 Rick Graziani graziani@cabrillo.edu

  38. Step 2: Configure Interfaces (Loopback & serial) R1(config)# interface loopback0 R1(config-if)# ip address 10.1.1.1 255.255.255.0 R1(config-if)# ipv6 address FEC0::1:1/112 R1(config)# interface serial0/0/0 R1(config-if)# ip address 172.16.12.1 255.255.255.0 R1(config-if)# clockrate 64000 R1(config-if)# no shutdown Rick Graziani graziani@cabrillo.edu

  39. R2’s Configuration: All IPv4 R2(config)# interface loopback0 R2(config-if)# ip address 10.1.2.1 255.255.255.0 R2(config)# interface serial0/0/0 R2(config-if)# ip address 172.16.12.2 255.255.255.0 R2(config-if)# no shutdown R2(config)# interface serial0/0/1 R2(config-if)# ip address 172.16.23.2 255.255.255.0 R2(config-if)# clockrate 64000 R2(config-if)# no shutdown Rick Graziani graziani@cabrillo.edu

  40. R3’s Configuration R3(config)# interface loopback0 R3(config-if)# ip address 10.1.3.1 255.255.255.0 R3(config-if)# ipv6 address FEC0::3:1/112 R3(config)# interface serial0/0/1 R3(config-if)# ip address 172.16.23.3 255.255.255.0 R3(config-if)# no shutdown Rick Graziani graziani@cabrillo.edu

  41. Step 3: Configure EIGRP R1(config)# router eigrp 1 R1(config-router)# no auto-summary R1(config-router)# network 10.0.0.0 R1(config-router)# network 172.16.0.0 R2(config)# router eigrp 1 R2(config-router)# no auto-summary R2(config-router)# network 10.0.0.0 R2(config-router)# network 172.16.0.0 R3(config)# router eigrp 1 R3(config-router)# no auto-summary R3(config-router)# network 10.0.0.0 R3(config-router)# network 172.16.0.0 Rick Graziani graziani@cabrillo.edu

  42. Verify: show ip route R1#show ip route 172.16.0.0/24 is subnetted, 2 subnets D 172.16.23.0 [90/2681856] via 172.16.12.2, 00:01:04, Serial0/0/0 C 172.16.12.0 is directly connected, Serial0/0/0 10.0.0.0/24 is subnetted, 3 subnets D 10.1.3.0 [90/2809856] via 172.16.12.2, 00:00:30, Serial0/0/0 D 10.1.2.0 [90/2297856] via 172.16.12.2, 00:01:04, Serial0/0/0 C 10.1.1.0 is directly connected, Loopback0 R2#show ip route 172.16.0.0/24 is subnetted, 2 subnets C 172.16.23.0 is directly connected, Serial0/0/1 C 172.16.12.0 is directly connected, Serial0/0/0 10.0.0.0/24 is subnetted, 3 subnets D 10.1.3.0 [90/2297856] via 172.16.23.3, 00:00:36, Serial0/0/1 C 10.1.2.0 is directly connected, Loopback0 D 10.1.1.0 [90/2297856] via 172.16.12.1, 00:01:10, Serial0/0/0 R3#show ip route 172.16.0.0/24 is subnetted, 2 subnets C 172.16.23.0 is directly connected, Serial0/0/1 D 172.16.12.0 [90/2681856] via 172.16.23.2, 00:00:11, Serial0/0/1 10.0.0.0/24 is subnetted, 3 subnets C 10.1.3.0 is directly connected, Loopback0 D 10.1.2.0 [90/2297856] via 172.16.23.2, 00:00:11, Serial0/0/1 D 10.1.1.0 [90/2809856] via 172.16.23.2, 00:00:11, Serial0/0/1 Rick Graziani graziani@cabrillo.edu

  43. Configure a Manual IPv6 Tunnel • IP v6로 IPv4 터널 만들기 • To configure a manual IPv6 tunnel, first issue the interface tunnel numbercommand. • For simplicity, use tunnel number 0 on both routers. R1(config)# int tunnel0 R1(config-if)# tunnel mode ipv6ip R1(config-if)# tunnel source s0/0/0 R1(config-if)# tunnel destination 172.16.23.3(건너편 IPv4 주소) R1(config-if)# ipv6 add FEC0::13:1/112(Local IPv6 주소) R3(config)# int tunnel0 R3(config-if)# tunnel mode ipv6ip R3(config-if)# tunnel source s0/0/1 R3(config-if)# tunnel destination 172.16.12.1 R3(config-if)# ipv6 add FEC0::13:3/112 Rick Graziani graziani@cabrillo.edu

  44. R1(config)# int tunnel0 R1(config-if)# tunnel mode ipv6ip R1(config-if)# tunnel source s0/0/0 R1(config-if)# tunnel destination 172.16.23.3 R1(config-if)# ipv6 add FEC0::13:1/112 R3(config)# int tunnel0 R3(config-if)# tunnel mode ipv6ip R3(config-if)# tunnel source s0/0/1 R3(config-if)# tunnel destination 172.16.12.1 R3(config-if)# ipv6 add FEC0::13:3/112 Rick Graziani graziani@cabrillo.edu

  45. R1#ping FEC0::13:3 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::13:3, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/68 ms R3#ping FEC0::13:1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::13:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/68 ms Rick Graziani graziani@cabrillo.edu

  46. Step 5: Configure OSPFv3 over a Tunnel • Enable IPv6 routing with the ipv6 unicast-routingcommand on R1 and R3. • Configure OSPFv3 on those routers to run over the tunnel and advertise the loopback interfaces into OSPFv3. R1(config)# ipv6 unicast-routing R1(config)# interface loopback 0 R1(config-if)# ipv6 ospf 1 area 0 R1(config)# interface tunnel 0 R1(config-if)# ipv6 ospf 1 area 0 R3(config)# ipv6 unicast-routing R3(config)# interface loopback 0 R3(config-if)# ipv6 ospf 1 area 0 R3(config)# interface tunnel 0 R3(config-if)# ipv6 ospf 1 area 0 Rick Graziani graziani@cabrillo.edu

  47. OSPF over IPv6 Tunnel R1(config)# ipv6 unicast-routing R1(config)# interface loopback 0 R1(config-if)# ipv6 ospf 1 area 0 R1(config)# interface tunnel 0 R1(config-if)# ipv6 ospf 1 area 0 R3(config)# ipv6 unicast-routing R3(config)# interface loopback 0 R3(config-if)# ipv6 ospf 1 area 0 R3(config)# interface tunnel 0 R3(config-if)# ipv6 ospf 1 area 0 Rick Graziani graziani@cabrillo.edu

  48. Verify Tunnel OSPF over IPv6 Tunnel R1#show ipv6 ospf neighbor Neighbor ID Pri State Dead Time Interface ID Interface 10.1.3.1 1 FULL/ - 00:00:39 18 Tunnel0 R1# R3#show ipv6 ospf neigh Neighbor ID Pri State Dead Time Interface ID Interface 10.1.1.1 1 FULL/ - 00:00:33 14 Tunnel0 R3# Rick Graziani graziani@cabrillo.edu

  49. Verify Tunnel OSPF over IPv6 Tunnel R1#ping FEC0::3:1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::3:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/64/68 ms R3#ping FEC0::1:1 Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to FEC0::1:1, timeout is 2 seconds: !!!!! Success rate is 100 percent (5/5), round-trip min/avg/max = 64/66/68 ms Rick Graziani graziani@cabrillo.edu

  50. Lab 8.3: Configuring 6to4 Tunnels Rick Graziani graziani@cabrillo.edu

More Related