280 likes | 468 Views
My JDBC Performance Sucks and What I Did About It!. Who am I?. Peter Tran Senior Performance Technical Lead Over 12 years with PROS 8 years working on server-side performance 6 years Oracle tuning 3 years SQL Server tuning ptran@prospricing.com. Topics. Assumptions
E N D
Who am I? • Peter Tran • Senior Performance Technical Lead • Over 12 years with PROS • 8 years working on server-side performance • 6 years Oracle tuning • 3years SQL Server tuning • ptran@prospricing.com
Topics • Assumptions • Transaction Isolation Levels • Connection • Batching • Queries • Parsing • Misc
Assumptions • Will not compare different driver type • Recommendations should be driver type agnostic • Examples in presentation uses Type IV Thin Driver • Examples uses SQL Server 2008 and Oracle 10g databases • Will not cover SQL optimization • Will not cover JDBC resource leak
Transaction Isolation Levels • Big impact on performance • Critical for correct business logic • java.sql.Connection
Connection • java.sql.Connection • Use connection pooling • Big performance penalty to create new physical connection to database
Batching • Batch UPDATE and INSERT SQLs • Use • java.sql.(Prepared/Callable)Statement • Added benefit of preventing SQL Injection (security) • Do not use • java.sql.Statement • Remember to setAutoCommit to FALSE • SQL statement reuse • Reduces parse
Batch Insert Example – Wrong! • Wrong way to do batch update. //turn off autocommit con.setAutoCommit(false); Statement stmt = con.createStatement(); stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')"); stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')"); stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)"); // submit a batch of update commands for execution int[] updateCounts = stmt.executeBatch();
Batch Insert Example • Right way to do batch update using PreparedStatement // turn off autocommit con.setAutoCommit(false); PreparedStatement stmt = con.prepareStatement( "INSERT INTO employees VALUES (?, ?)"); stmt.setInt(1, 2000); stmt.setString(2, "Kelly Kaufmann"); stmt.addBatch(); stmt.setInt(1, 3000); stmt.setString(2, "Bill Barnes"); stmt.addBatch(); // submit the batch for execution int[] updateCounts = stmt.executeBatch();
Batch Query Example • Right way to do batch query using CallableStatement // turn off autocommit con.setAutoCommit(false); CallableStatement stmt = con.prepareCall("sp_GetEmployees (?, ?)"); stmt.setInt(1, 2000); stmt.setString(2, "Kelly Kaufmann"); ResultSet rs = stmt.executeQuery()
Batch Insert Test Results • Test 1: Statement – No Batch • Test 2: PreparedStatement – No batch/no reuse • Test 3: PreparedStatement – No batch/reuse • Test 4: PreparedStatement – With batch/reuse
Batch Pitfalls • Forgetting to set autocommit to FALSE • Excessively large batch size • Writer blocks readers • Use up more memory on database server • ORA-01555 snapshot too old
Query Performance • Set fetch size • Settable • java.sql.ResultSet • java.sql.Statement • java.sql.(Prepared/Callable)Statement • Oracle 11.2g driver defaults to 10 • SQL Server v3.0 driver defaults to 128 • Reduces Physical/Logical I/O • Uses more memory in client to hold data
Query Performance • Fetch only data that is needed • SQL Optimization – Physical/Logical IOs • Reduce Network • Use appropriate getXXX() method for retrieving data • Minimize data conversion guessing • Eliminates nasty conversion bug
Microsoft Query Set Fetch Size Test Results • Test 1: Query 1M rows – fetch size = 10 • Test 2: Query 1M rows – fetch size = 128 (default) • Test 3: Query 1M rows – fetch size = 1M
Oracle Query Set Fetch Size Test Results • Test 1: Query 1M rows – fetch size = 10 (default) • Test 2: Query 1M rows – fetch size = 500 • Test 3: Query 1M rows – fetch size = 1M
Parsing • Parsing is expensive! • Scalability killer for high volume OLTP applications • Not as big of concern for OLAP applications • Consumes CPU intensive • Database engine not doing real-work • Increase latch contention • Increase memory usage • SQL statement cache is a singleton • Oracle: Shared Pool • SQL Server: Plan Cache
Parsing • Best place to fix is in the application code • Use PreparedStatement or CallableStatement • No Parse – Predicates uses bind variables and Statement reused • Soft Parse – Predicate uses bind variables but Statement not reused • Hard Parse – Predicate with literal values
Parse Fix - Hack • Do not have access to application code • May select a suboptimal query plan • Buggy
Oracle Parsing Example • Oracle 11.2g JDBC Driver • Test 1: Hard Parse (using Statement with literals) • Test 2: Soft Parse • Test 3: Parse Once
Microsoft Parsing Example • Microsoft JDBC Driver version 3.0 • Test 1: Hard Parse (using Statement with literals) • Test 2: Soft Parse • Test 3: Parse Once
jTDS Parsing Example for SQL Server • jTDS JDBC Driver version 1.2.5 • Test 1: Hard Parse (using Statement with literals) • Test 2: Soft Parse • Test 3: Parse Once
Parse Fix - Hack • SQL Server • Use PARAMETERIZATION = FORCED • Set at database level (Database Properties -> Options) • Restrictive: Check Books-On-Line (BOL) • YMMV – 5% improvements
Parse Fix - Hack • Oracle • CURSOR_SHARING = SIMILAR | FORCED • Instance level or session level • Use trigger to hack session level for each login CREATEORREPLACETRIGGER after_usr_logon AFTER LOGON ON <USER>.SCHEMA BEGIN EXECUTE IMMEDIATE 'ALTER SESSION SET CURSOR_SHARING=FORCE'; END; • Super buggy • Use SIMILAR – mixed work-load OLTP/OLAP • Use FORCE – pure OLTP • Use EXACT (default) – DSS/DW OLAP
Driver Specific Improvements • Requires casting to drive specific implementation • Your Performance May Vary (YPMV) • Microsoft JDBC Driver version 3.0 • Adaptive Buffer – reduces memory footprint in client to minimize Out of Memory but requires more round-trip to database (default=adaptive as of version 2.0) • Oracle 11.2g JDBC Driver • Statement and ResultSet Caching • Connection Caching • jTDS JDBC Driver version 1.2.5 • Implicitly caches PreparedStatement – not a new feature
Database JDBC Driver Tuning Parameters • SQL Server • Implicit Unicode conversion • Use setStringParametersAsUnicode • Bypass index and use table scan
My JDBC Performance Workout Plan • Maximize the usage of batching • Set appropriate fetch size for queries • Set the appropriate isolation level • Reduce the hard/soft parses Before After