190 likes | 324 Views
Probes of Pairing in Strongly Interacting Fermions. Erich Mueller --Cornell University. Sourish Basu Stefan Baur Theja De Silva (Binghampton) Dan Goldbaum Kaden Hazzard. Outline. A tool: Doppler free spectroscopy Capabilities Challenges
E N D
Probes of PairinginStrongly InteractingFermions Erich Mueller --Cornell University Sourish Basu Stefan Baur Theja De Silva (Binghampton) Dan Goldbaum Kaden Hazzard
Outline • A tool: Doppler free spectroscopy • Capabilities • Challenges • Probing fermionic superfluidity near Feshbach resonance
Abs Ketterle Group: Science 316, 867-870 (2007) “Pairing without Superfluidity: The Ground State of an Imbalanced Fermi Mixture” dn [kHz] Take-Home Message - I Chin et al. Science 20, 1128 (2004) • RF/Microwave spectroscopy does tell you details of the many-body state • Weak coupling -- density • Strong coupling -- complicated by final-state effects • Bimodal RF spectra in trapped Fermi gases not directly connected to pairing (trap effect) Decreasing T
Take Home Message II • Homogeneous RF spectrum: two components -- bound-bound and bound-free • Final state effects are crucial -- qualitative role Bound-Free Bound-Bound Basu and Mueller, arXiv:0712.1007
Context: Upcoming Cold Atom Physics Profound increase in complexity Ex: modeling condensed matter systems Big Question: How to probe?
Atomic Spectroscopy I(w) [transfer rate] E w w w0 Narrow hyperfine spectral line in vacuum (Hz): in principle sensitive to details of many-body state (Eint~100kHz) (weak coupling) (weak coupling) Line shift proportional to density [Clock Shift]
Spectrum gives histogram of density Applications BEC: Density bump Solid: condensedOpen: non-condensed Exp: (Kleppner group) PRL (1998) Theory: Killian, PRA (2000) Mott Shells: Exp: Ketterle group [Science, 313, 649 (2006)] Density Plateaus Thy: Hazzard and Mueller [arXiv:0708.3657]
Pairs Spectrum knows about more than density! Jin group [Nature 424, 47 (2003)] Ex: RF dissociation - Potassium Molecules (Thermal, non-superfluid fermionic gas) Free atoms Initially weakly bound pairs in (and free atoms in these states) pairs Drive mf=-5/2 to mf=-7/2 Also see:Grimm group [Science 305, 1128 (2004)]Ketterle group [Science 300, 1723 (2003)
Many-Body Simple limit I: Final state does not interact (V(ab)=0) • analogous to momentum resolved tunneling (or in some limits photoemission) • probe all single particle excitations Initial: ground state Final: single a-quasihole of momentum k single free b-atom Simple Limits II: Final state interacts same as initial (V(ab)=V(bb)), Ladder operator General Case: System specific
Lithium near Feshbach resonance Innsbruck expt grp +NIST theory grp, PRL 94, 103201 (2005) Strongly interacting superfluid Strong final state interactions!!! BCS-BEC crossover
Basu and Mueller, arXiv:0712.1007 Variational Model Idea: include all excitations consisting of single quasiparticles quasiholes “coherent contribution” -- should capture low energy structure a-b pairs -- excite from b to c Neglects multi-quasiparticle intermediate states (equivalent to BCS-RPA A. Perali, P. Pieri, G.C. Strinati, arXiv:0709.0817) [Exact if (final int)=(initial int) or if (final int)=0]
Result Bound-Free Bound-Bound Experiment Many-body
What about the trap? Most experiments show trap averaged lineshape Grimm group, Science 305, 1128 (2004) Bimodality:due to trap Thy: Kinnunen, Rodriguez, and Torma, Science 305, 1131 (2004); Heiselberg NJP 6, 137 (2004); Chin and Julienne, PRA 71, 012713;Ohashi and Griffin, PRA 72, 013601 (2005); He, Chen, and Levin, PRA 72, 011602 (2005); Yu and Baym, PRA 73, 063601 (2006);He, Chien, Chen, Levin, arXiv:0707.2625; Baym, Pethick, Yu, and Zwierlein, arXiv:0707.0859; Punk and Zwerger, arXiv:0707.0792;Perali, Pieri, Strinati, arXiv:0709.0817; Massignan, Bruun, and Stoof, arXiv:0709.3158
Where spectral weight comes from Massignan, Bruun, and Stoof, ArXiv:0709.3158 (Neglects Final state interaction) Edge of cloud Calculation in normal state: Ndown<Nup More particles at center No superfluidity!! Pairing? Also see He, Chen and Levin, PRA 72, 011602 (2005)
Highly polarized limit: only one down-spin particle Generic properties Assumption: local clock shift = (homogeneous spectrum peaks there) High temp: [Virial expansion: Ho and Mueller, PRL 92, 160404 (2004)] High density: Different a
Bimodality nup ndn r Center of trap: highest down-spin density -- gives broad peak Edge of trap: low density, but a lot of volume -- All contribute at same detuning -- Gives power law-log singularity
Quantitative Ketterle Group: Science 316, 867-870 (2007) Nozieres and Schmidt-Rink Mueller, ArXiv:0711.0182 Agreement: fortuitous, but gives scaling with parameters (no adjustable params)
Summary • Trap leads to bimodal spectrum (model independent) regardless of pairing • Homogeneous spectrum can reveal pairing (bound-bound transition) but final state interactions are crucial