520 likes | 529 Views
Dive into the realm of 3D transformations with CSE 681! Learn about modeling and viewing techniques, such as transformations, rotations, scalings, and more. Explore how to build complex models by positioning simple components relative to each other and create animations by varying transformations over time.
E N D
Review:Transformations CSE 681
Transformations • Modeling transformations • build complex models by positioning (transforming) simple components relative to each other • Viewing transformations • placing virtual camera in the world • transformation from world coordinates to camera coordinates • Perspective projection of 3D coordinates to 2D • Animation • vary transformations over time to create motion CSE 681
Transformations - Modeling CSE 681
Transformations - Viewing CAMERA OBJECT WORLD CSE 681
Modeling Transformations Transform objects/points Transform coordinate system CSE 681
Affine Transformations Transform P = (x, y, z) to Q = (x’, y’, z’) by M. Affine transformation: CSE 681
Translation Translation by (tx, ty, tz): (tx, ty, tz) CSE 681
Scaling Scaling by (sx, sy, sz): Uniform v. non-uniform scaling CSE 681
y r r x z Rotation Rotation counter-clockwise by angle around the z-axis: x’ = x cos() – y sin() y’ = x sin() + y cos() z’ = z • Proof: • x = r cos() • y = r sin() • x’ = r cos( + ) = r cos() cos() – r sin() sin() = x cos() – y sin() • y’ = r sin( + ) = r cos() sin() + r sin() cos() = x sin() + y cos() CSE 681
Rotation around x-axis Rotation counter-clockwise by angle around the x-axis: x’ = x y’ = y cos() – z sin() z’ = y sin() + z cos() z y x CSE 681
Rotation around y-axis Rotation counter-clockwise by angle around the y-axis: y’ = y z’ = z cos() – x sin() x’ = z sin() + x cos() Or x’ = x cos() + z sin() y’ = y z’ = – x sin() + z cos() x z y CSE 681
Matrix Multiplication • Scaling by (sx, sy, sz): • x’ = sx x • y’ = sy y • z’ = sz z Rotation counter-clockwise by angle around the z-axis: x’ = x cos() – y sin() y’ = x sin() + y cos() z’ = z • Translation by (tx, ty, tz): • x’ = x + tx • y’ = y + ty • z’ = z + tz CSE 681
Homogeneous Coordinates Represent P by (x, y, z, 1) and Q by (x’, y’, z’, 1). (Homogeneous coordinates.) Scaling by (sx, sy, sz): x’ = sx x y’ = sy y z’ = sz z • Translation by (tx, ty, tz): • x’ = x + tx • y’ = y + ty • z’ = z + tz CSE 681
Rotation Matrices Rotation counter-clockwise by angle around the x-axis: x’ = x y’ = y cos() – z sin() z’ = y sin() + z cos() • Rotation counter-clockwise by angle around the y-axis: • x’ = x cos() + z sin() • y’ = y • z’ = – x sin() + z cos() • Rotation counter-clockwise by angle around the z-axis: • x’ = x cos() – y sin() • y’ = x sin() + y cos() • z’ = z CSE 681
Affine Transformation Matrix Affine transformation: x’ = m11 x + m12 y + m13 z + m14 y’ = m21 x + m22 y + m23 z + m24 z’ = m31 x + m32 y + m33 z + m34 Transformation Matrix: CSE 681
y x z Shearing Shear along the x-axis: x’ = x + hy y’ = y z’ = z CSE 681
y x z Reflection Reflection across the x-axis: x’ = (-1) x y’ = y z’ = z Reflection is a special case of scaling! CSE 681
Elementary Transformations • Translation • Rotation • Scaling • Shear What about inverses? CSE 681
Inverse Transformations Translation Scale Rotation Shear CSE 681
Scale by (2, 1, 1) y • Translate by (20, 5, 0) • Rotate by 30° counter-clockwise around the z-axis x z • Translate by (0, -50, 0) Compose Transformations CSE 681
Scale by (2, 1, 1); y • Translate by (20, 5, 0); • Rotate by 30° counter-clockwise around the z-axis; x z • Translate by (0, -50, 0). Translate Rotate Translate Scale Compose Transformation Matrices CSE 681
y x z Compose Transformation Matrices • Scale by (2, 1, 1); • Translate by (20, 5, 0); • Rotate by 30° counter-clockwise around the z-axis; • Translate by (0, -50, 0). CSE 681
y y x x z z Order Matters! Transformations are not necessarily commutative! • Translate by (20, 0, 0). • Rotate by 30. • Rotate by 30. • Translate by (20, 0, 0). CSE 681
Order of Transformation Matrices Apply transformation matrices from right to left. • Translate by (20, 0, 0). • Rotate by 30. • Rotate by 30. • Translate by (20, 0, 0). CSE 681
Which transformations commute? • Translation and translation? • Scaling and scaling? • Rotation and rotation? • Translation and scaling? • Translation and rotation? • Scaling and rotation? CSE 681
Elementary Transformations • Elementary transformations: • Translation; • Rotation; • Scaling; • Shear. Theorem: Every affine transformation can be decomposed into elementary operations. Euler’s Theorem: Every rotation around the origin can be decomposed into a rotation around the x-axis followed by a rotation around the y-axis followed by a rotation around the z-axis. (or a single rotation about an arbitrary axis). CSE 681
Vectors Vector V = (Vx, Vy, Vz). Homogeneous coordinates: (Vx, Vy, Vz, 0). Affine transformation: CSE 681
Vectors Rotation: Scaling: Translation: (Note: No change.) CSE 681
Transform Parametric Line V P(u) u P0 M M M u W Q(u) Q0 CSE 681
Line transformed point on a line = point on transformed line Theorem: Affine transformations transform lines to lines. CSE 681
Affine Transformation of Lines y y x x z z CSE 681
Affine Combinations Q b R a P M M b M Q’ a R’ P’ CSE 681
Affine Combinations Theorem: Affine transformations preserve affine combinations. CSE 681
Properties of Affine Transformations • Affine transformations map lines to lines; • Affine transformations preserve affine combinations; • Affine transformations preserve parallelism; • Affine transformations change volume by | Det(M) |; • Any affine transformation can be decomposed into elementary transformations. • Affine transformations [does/does not] preserve angles? • Affine transformations [does/does not] preserve the intersection of two lines? • Affine transformations [does/does not] preserve distances? CSE 681
Properties of Transformation Matrices First column is how (1,0,0,0) transforms Second column is how (0,1,0,0) transforms Third column is how (0,0,1,0) transforms Matrix holds how coordinate axes transform and how origin transforms CSE 681
Properties of Pure Rotation Matrices Rows (columns) are orthogonal to each other A row dot product any other row = 0 Each row (column) dot product times itself = 1 RT = R-1 CSE 681
Coordinate Frame • Coordinate frame is given by origin and three mutually orthogonal unit vectors, i, j, k - defined in (x,y,z) space • Mutually orthogonal (dot products): i•j = ?; i•k = ?; j•k = ?. • Unit vectors (dot products): i•i = ?; j•j = ?; k•k = ?. y j i k x z CSE 681
y x z Orientation Right handed coordinate system: Left handed coordinate system: y (Into page) z x (Out of page) CSE 681
y y j i k x x z z Orientation Right handed coordinate system: Left handed coordinate system: k j i Cross product: i x j = ? Cross product: i x j = ? How do you test whether (i,j,k) is left handed or right handed? CSE 681
y j i x z k Coordinate Transformations Given object data points defined in the (i, j, k, ) coordinate frame, Given the definition of (i, j, k, ) in (x, y, z) coordinates, How do you determine the coordinates of the object data points in the (x, y, z, 0) frame? CSE 681
y x z Coordinate change (Translation) b (x, y, z) a (0,0,0) c Change from (a,b,c,) coordinates to (x,y,z,0) coordinates: • Move (a,b,c, ) to (x,y,z,0) and invert • Move data relative from (0,0,0) out to position by adding CSE 681
b (x, y, z) a c Coordinate change (Rotation) x y z-axis rotation by (0,0,0) z Change from (a,b,c,) coordinates to (x,y,z,0) coordinates: • Rotate (a,b,c) by and invert • Rotate data by - CSE 681
y j j i i x z k k f 1 0 é ù 0 x ê ú f 0 1 0 y ê ú . f 0 ê ú 0 1 z ê ú 0 0 0 1 ë û Object Transformations Given (i,j,k,p) defined in the (x,y,z,0) coordinate frame, Transform points defined in the (i, j, k, )coordinate frame to the (x,y,z,0) coordinate frame. Rotate object to get x to line up with i, then translate to CSE 681
y j j i i x z k k Object Transformations Affine transformation matrix: CSE 681
y j i x z k Coordinate Transformations Given (i,j,k,f) defined in the (x,y,z,0) coordinate frame, Transform points in (i,j,k,0) coordinate frame to (x,y,z, ) coordinate frame. translate by - , then rotate to align i with x – then invert CSE 681
y j i x z k Coordinate Transformations T = R= CSE 681
y j i x z k Affine transformation matrix: Coordinate Transformations Apply RT to coordinate system Apply (RT)-1 to data = T-1R-1 CSE 681
Composition of coordinate change y M1 changes from coordinate frame (x,y,z,) to (x’,y’,z’,’). M2 changes from coordinate frame (x’,y’,z’,’) to (x’’,y’’,z’’,’’). Change from coordinate frame (x,y,z,) to (x’’,y’’,z’’,0): ? y’ M1 y” z M2 x x’ ’ z’ 0 x” z” CSE 681
Composition of transformations - example B’ B y q A x CSE 681
Transformations of normal vectors n n is a unit normal vector to plane . M is an affine transformation matrix. How is n transformed, to keep it perpendicular to the plane, under: • translation? • rotation by ? • uniform scaling by s? • shearing or non-uniform scaling? CSE 681