360 likes | 540 Views
Calculating Molecular Binding Energies from Chemical Bonds to van der Waals Interactions. Thom H. Dunning, Jr. Joint Institute for Computational Sciences University of Tennessee – Oak Ridge National Laboratory Oak Ridge, Tennessee. Joint Institute for Computational Sciences.
E N D
Calculating Molecular Binding Energiesfrom Chemical Bonds to van der Waals Interactions Thom H. Dunning, Jr. Joint Institute for Computational Sciences University of Tennessee – Oak Ridge National Laboratory Oak Ridge, Tennessee
Outline of Seminar • Statement of the Problem • Theoretical Methods • Basis Sets and Error Analysis • Correlation Consistent Basis Sets • Errors in Molecular Calculations • Errors in Molecular Binding Energies (for Four Classes) • Intrinsic Errors of Methods • Basis Set Convergence Errors • Statistical Analysis of Errors in Binding Energies • Conclusions
Statement of ProblemWide Range of Binding Energies De (kcal/mol) 0.01 0.1 1.0 10.0 100.0 1000.0 } He2 Ne2 Ar2 (HF)2 N2 Ar-HF H-CO CO N2-HF H-C2H2 Ar-HCl H-CO- H-CHn H-C2Hn
Statement of ProblemImportance of Electron Correlation De (kcal/mol) HF Expt’l HF 100.3 141.6 N2 122.3 228.4 F2 -27.0 39.0 (HF)2 3.7 4.6 N2-HF 1.27 2.22 He2 – 0.0218 Chemical Bonds Hydrogen Bonds Electrostatic “Bonds” van der Waals “Bonds”
Perturbation Theory He = H0 + lH1 Ye = F0 + lF1 + l2F2 + … Ee = E0 + lE1 + l2E2 + … • Most widely used technique for including electron correlation • Assumes that electron correlation is perturbation to the HF hamiltonian • Recent studies have revealed serious convergence problems Theoretical Methods Configuration Interaction Ye = F0 + SCiaFia + SSCijabFijab + … He C = Ee C • Long history in electronic structure theory • Very flexible, e.g., can describe both ground and excited states • Not size extensive/consistent
Theoretical Methods Coupled Cluster Theory Ye = eTF0 T = t1 + t2 + t3 + … t1 = Stiaaa+ai t2 = Stijabab+aa+ajai t3 = ... • Recent addition to electronic structure theory • Includes dominant higher-order terms as products of lower order terms • Rapid convergence if wavefunction is dominated by well localized electron pairs • Convergence problems if HF wave-function provides poor zero-order description of molecule
260.0 CBS Limit +1s1p1d1f1g 255.0 +1s1p1d1f +1s1p1d HF Orbitals 250.0 245.0 De(CO) 240.0 cc-pVDZ 2 3 4 5 6 cc-pVTZ n (cc-pVnZ) cc-pVQZ Basis Sets and Error AnalysisCorrelation Consistent Basis Sets • cc-Sets based on detailed study of electron correlation in atoms • Correlation functions added in shells • Hartree-Fock orbitals • cc-pVDZ: + (1s1p1d) cc-pVTZ: + (2s2p2d1f) cc-pVQZ: + (3s3p3d2f1g) … • Augmented with diffuse functions for anions, long range interactions, etc. • Molecular properties often exhibit systematic dependence • Possible to extrapolate properties to complete basis set limit
Basis Sets and Error AnalysisDefinition of Errors (Method “M”) • Basis Set Convergence Error DQbsM(n) = Q(M,n) – Q (M,¥) • Intrinsic Error DQM = Q(M,¥) – Q(expt’l) • Calculational Error DQcalc’dM(n) = Q(M,n) – Q (expt’l) = DQbsM(n) + DQM
Type I Type II Type III Q(expt’l) DQM QM(¥) DQcalc’dM Note: DQcalc’dM » 0 DQbsM(n) n n n Basis Sets and Error AnalysisConvergence Types
Molecular Binding Energies:Chemical Bonds T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062- 9080 (2000) K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper, J. Chem. Phys. 112, 9229- 9242 (2000)
Intrinsic Errors in DeChemical Bonds CH HF CO N2 De (kcal/mol)a 83.9 141.6 258.6 227.4 MP2 -2.9 4.2 13.0 12.5 MP3 -1.4 -3.1 -8.5 -11.7 MP4 -0.6 1.1 5.7 4.7 MP5 -1.0 CCSD -1.0 -2.2 -8.1 -9.8 CCSD(T) -0.2 -0.1 0.0 -0.3 CCSDT -0.1 -0.2 -0.6 -1.1 a Corrected for core-valence and relativistic effects.
Basis Set Convergence Errors in DeChemical Bonds DDebs(n) (kcal/mol) n n
D = average error Region of “false positives” Statistical Analysis of Binding Energies r(Q) Dstd = error variation 0 DQ (Error in Q)
MP2 CCSD +(T) D 6.0 -8.3 -1.0 Dstd 7.5 4.5 0.5 Intrinsic Errors in DeMP2 , CCSD, CCSD(T) Methods (6Z Set) r(DDe) DDe (kcal/mol)
Basis Set Convergence of DeCCSD(T) Method for Chemical Bonds D = -1.0 kcal/mol Dstd = 0.5 kcal/mol r(DDe) DDe (kcal/mol)
Extrapolation of Binding EnergiesAnalysis of Electron Correlation in He • Principal Expansion E = EHF(1s) + E2(2s2p)corr + E3(3s3p3d)corr + … • Errors in He Atom Klopper et al. [J. Phys. B. 32, R103 (1999)] showed error in truncating series after nth term in principal expansion is • Extrapolation Formula
DT TQ Q5 56 D -3.5 -0.1 0.0 -0.1 Dstd 2.0 0.5 0.3 0.2 Extrapolation of DeCCSD(T) Method for Chemical Bonds 1.6 r(DDe) 5Z-6Z QZ-5Z TZ-QZ DZ-TZ DDe (kcal/mol)
Molecular Binding Energies:Hydrogen Bonds T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062- 9080 (2000) A. Halkier, W. Klopper, T. Helgaker, P. Jørgensen, and P. R. Taylor, J. Chem. Phys.111, 9157 (1999)
Intrinsic Errors in DeHydrogen Bond in HF Dimer (HF)2 De (kcal/mol) 4.56 ± 0.05 a MP2 -0.09 MP3 -0.03 MP4 -0.02 CCSD -0.16 CCSD(T) -0.02 a W. Klopper, M. Quack, and M. Suhm, J. Chem. Phys. 108, 10096 (1998).
Basis Set Convergence Errors in DeHydrogen Bonds in (H2O)2 and Others 0.0 -0.5 (H O) DDebs(n) (kcal/mol) 2 2 -1.0 cc-pV n Z aug-cc-pV n Z d-aug-cc-pV n Z -1.5 2 3 4 5 n n
Errors in DeHydrogen Bonds De(n) (kcal/mol) BSSE BSCE De(n=∞) n
Extrapolation of DeHydrogen Bond in HF Dimer De(n) (kcal/mol) Calculated Extrapolated n
Molecular Binding Energies:Electrostatic Interactions T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062- 9080 (2000)
Intrinsic Errors in DeElectrostatic Interactions N2-HF Ar-HF Ar-FH Ar-HCl Ar-ClH De (cm-1) 776±30a 211±4b 109±10b 176±5c 148±10c MP2 35 -10 -16 31 33 MP3 -36 -31 -31 MP4 38 7 -10 10 7 CCSD -52 -45 -36 CCSD(T) 17 0 -15 0 7 a R. J. Bemish, E. J. Bohac, M. Wu, and R. E. Miller, J. Chem. Phys. 101, 9457 (1994) and references therein. b J. M. Huston, J. Chem. Phys. 96, 6752 (1992) and references therein. c J. M. Huston, J. Chem. Phys. 89, 4550 (1988); J. M. Hutson, J. Chem. Phys. 96, 4237 (1992) and references therein.
Basis Set Convergence Errors in DeElectrostatic Interactions DDebs(n) (cm-1) n n
Molecular Binding Energies:van der Waals Interactions T. H. Dunning, Jr., J. Phys. Chem. A 104, 9062- 9080 (2000)
Intrinsic Errors in Devan der Waals Interactions He2 Ne2 Ar2 De(cm-1) 7.59 a 29.4 b 99.6 c MP2 -2.7 -10.5 13.4 MP3 -1.1 -7.1 -17.6 MP4 -0.5 -1.9 0.4 MP5 -0.2 CCSD -1.1 -6.8 -27.6 CCSD(T) -0.2 -1.0 -2.6 CCSDT -0.0 a R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991); R. A. Aziz, A. R. Janzen, and R. Moldover, Phys. Rev. Lett. 74, 1586 (1995). b R. A. Aziz, W. J. Meath, and A. R. Allnatt, Chem. Phys. 78, 295 (1983); R. A. Aziz and M. J. Slaman, Chem. Phys. 130, 187 (1989). c R. A. Aziz and M. J. Slaman, Mol. Phys. 58, 679 (1986); R. A. Aziz, J. Chem. Phys. 99, 4518 (1993).
Basis Set Convergence Errors in Devan der Waals Interactions DDebs(n) (cm-1) n n
Conclusions • Critical Assessment of Methods • Coupled cluster method provides reliable means of computing molecular properties for molecules well described by single configuration • Perturbation method is poorly convergent or even non-convergent; often does not achieve chemical accuracy for chemical bonds • Critical Assessment of Basis Sets • Correlation consistent basis sets systematically approach complete basis set limit, extrapolation possible • Choice of cc-basis set family depends on molecular system • Chemically bound covalent molecules—standard sets
Conclusions (cont’d) • Chemically bound ionic, hydrogen-bonded, and electrostaticly bound molecules—singly augmented sets • van der Waals bound molecules—doubly augmented sets • Convergence with basis set is slow • Difficult to describe coulomb hole using expansions in one-electron functions • Rate of convergence depends on molecular details • Single, double or triple bonds • Chemically bound, hydrogen-bonded, electrostatically bound or van der Waals bound • Extrapolation substantially improves convergence rate
Acknowledgements It is a pleasure to acknowledge contributions of … Kirk Peterson, David Woon, David Feller, Ricky Kendall, Tanja van Mourik, and Angela Wilson to this work It is also a pleasure to acknowledge work of … Poul Jørgensen, Trygve Helgaker, Wim Klopper, Jeppe Olsen and coworkers, whose work has also contributed greatly to calibrating the methods used for molecular calculations Finally, I would like to thank … Division of Chemical Sciences, Office of Science, U.S. Department of Energy for their support of this work.
DefinitionsDe and D0 Separated Atoms A+B E De D0 Zero Point Energy AB Molecule
10.0 1.0 -0.32 K 0.1 V(R) (K) T-(T) 0.01 -0.015 K FCI-T 0.001 0.0001 3 4 5 6 7 8 9 10 11 12 R (bohr) Higher Order Effects in He2