270 likes | 468 Views
Handout Ch3 實習. 微積分複習. dx n /dx=nx n-1 dC/dx=0 dlnx/dx=1/x de x /dx=e x dx/dy=0 ∫x n dx=(1/n+1)x n+1 +C ∫e x dx=e x +C ∫(1/x)dx=ln∣x ∣+C. 微積分笑話一. 某天,一位同學和微積分教授說: 「教授啊,我今天心情很不好耶 … 」 教授就說:「那我用微積分來幫你卜卦看看好不好?」 於是,教授就要求同學隨意寫下兩個字, 同學雖然半信半疑,但是還是寫了「麻煩」二字。 教授看了之後,笑笑的說:「你一定是被爸媽罵了。」
E N D
微積分複習 • dxn/dx=nxn-1 • dC/dx=0 • dlnx/dx=1/x • dex/dx=ex • dx/dy=0 • ∫xndx=(1/n+1)xn+1+C • ∫exdx=ex+C • ∫(1/x)dx=ln∣x ∣+C Jia-Ying Chen
微積分笑話一 • 某天,一位同學和微積分教授說: • 「教授啊,我今天心情很不好耶…」 • 教授就說:「那我用微積分來幫你卜卦看看好不好?」於是,教授就要求同學隨意寫下兩個字,同學雖然半信半疑,但是還是寫了「麻煩」二字。 • 教授看了之後,笑笑的說:「你一定是被爸媽罵了。」 • 同學大驚:「哇塞!教授,你怎麼那麼厲害,一下就猜到了!」 • 「你別急,我來慢慢解釋給你聽。」教授不急不徐地解釋: • 「首先我們先用一次微分把麻煩的「麻」字的蓋子微掉, 不就剩下「林」了嗎?然後也把「煩」這個字用二次微分, 分別把「火」和「┬」去掉,剩下的字就是「貝」。」 • 「此時我們可以得到「林貝」二字,這就說明你被你爸罵了!」 • 正當同學張大嘴巴說不出話來時,教授又繼續說了下去。 • 「還沒完喔,現在再把剩下的「貝」字再做一次微分, 把下面的「八」去掉,就得到「目」這個字。」 • 「因此我們又得到「林目」二字,這說明你也有被你媽媽罵!」 Jia-Ying Chen
微積分笑二 • 某天上微積分課時,教授提到了在座標軸上的積分,學生們看著滿滿的黑板公式,趕緊在下面抄筆記,但是心似乎都不放在課堂之上。 • 講到一半,教授問一位女同學:「先積甚麼?」 • 女同學被突如其來的問話嚇了一跳,緊接著說她不會,教授再問全班同學,也沒有人回答。 • 這時教授突然大吼一聲:「雞歪啦!連這個都不會。」 • 全班同學當場嚇了一大跳,教授竟然開口飆髒話! • 結果仔細一看,才發現教授正在積y軸… Jia-Ying Chen
微積分笑話三 • 有一位數學家得了精神病,他覺得自己是微分的主宰者,朋友們將他送到精神病院希望他能好起來。 • 每天,這位數學家都會在院內四處閒逛,只要遇到其他病人,他就會恐嚇地說:「我要把你微分掉!」 • 有一天,院裡來了一個新病人,像往常一樣地,他瞪著那位病人大聲吼:「我要把你微分掉!」但這次,那位病人的表情一點也不變。 • 數學家十分訝異,提起精神來狠狠地盯著那位新病人,更大聲地說:「我要把你微分掉!」但那位病人依然一點反應也沒有。 • 數學家氣極了,最後他放聲大叫:「我要把你微分掉!」 • 病人平靜地看了數學家一眼,他說: • 「你想怎麼微分我都無所謂,因為我是e的x次方。」 Jia-Ying Chen
微積分笑話四 • 某天,常數函數C和指數函數e的x次方走在街上,遠遠地,他們看到微分運算元朝他們這邊走了過來。 • 常數函數嚇得慌忙躲藏起來,緊張地說:「被它微分一下,我就什麼都沒有啦!」 • 指數函數則是不慌不忙地說:「它可不能把我怎麼樣,我可是e的x次方耶!」 • 終於,指數函數和微分運算元在路中相遇了。 • 指數函數首先自我介紹道:「你好,我是e的x次方!」 • 而微分運算元也微笑地自我介紹: • 「你好,我是d/dy!」 Jia-Ying Chen
Example 1 • Suppose that the p.d.f of a random variable X is as follows: • a. Find the value of constant c and sketch the p.d.f • b. Find the value of Pr(X>3/2) Jia-Ying Chen
Solution a. b. Jia-Ying Chen
Cumulative Distribution Function • The cumulative distribution function (c.d.f.) or distribution function (d.f.) of a random variable X (discrete or continuous) is a function defined for each real number x as follow: • Discrete distribution • Continuous distribution Jia-Ying Chen
Determining Probabilities from the c.d.f. • For every x, Pr(X > x) = 1-F(x) • For all x1 and x2 such that x1 < x2, then • For each x, • For every x, For example, and the probability of every other individual value of X is 0. Jia-Ying Chen
Example 2 • Suppose that the d.f. F of a random variable X is as sketched as follows. Find each of the following probabilities a. Pr(X=2) b. Pr(2<=x<=5) c. Pr(X>=5) d. Pr(X=4) e. Pr(1<x<=2) f. Pr(2<=X<=4) Jia-Ying Chen
0.8 0.7 0.3 0.2 5 4 1 2 Jia-Ying Chen
Solution Jia-Ying Chen
Bivariate Distributions - Discrete Joint Distributions - • The joint probability mass function, or the joint p.m.f., of X and Y is defined as • Example: Suppose the joint p.m.f. of X and Y is specified as: Jia-Ying Chen
Bivariate Distributions- Continuous Joint Distributions - • The joint probability density function, or the joint p.d.f. of X and Y is defined as f (x, y). For every subset A of the xy-plane, • The joint p.d.f. must satisfy two conditions: Jia-Ying Chen
y=1-x 雙重積分複習 • 0≦y ≦1-x,0≦x≦1 • 積分秘訣 • 依照題目給定範圍畫出圖 • 判斷先積x還是先積y比較容易 Jia-Ying Chen
Example 3 • Suppose that the joint p.d.f of two random variables X and Y as follows: Determine Pr(0<=X<=1/2) Jia-Ying Chen
Solution Jia-Ying Chen
Bivariate Cumulative Distribution Functions • The joint cumulative distribution function, or joint c.d.f., of two random variables X and Y is defined as • Note that • If X and Y have a continuous joint p.d.f., then • The joint p.d.f. can be derived from the joint c.d.f. by using Jia-Ying Chen
Marginal Distributions • If X and Y have a discrete joint distribution for which the joint p.m.f. is f, then the marginal p.m.f. f1 of X can be found as follows: Also, • If X and Y have a joint p.d.f. f, then the marginal p.d.f. of X and Y are: Jia-Ying Chen
Independent Random Variables • Two random variables (discrete or continuous) X and Y areindependentif, for every two sets A and B of real numbers, • Two random variables X and Y are independent if and only if, for all real numbers x and y, • X and Y are independent if and only if, for all real numbers x and y, Jia-Ying Chen
Independent Random Variables • Suppose X and Y are random variables that have a continuous joint p.d.f. Then X and Y will be independent if and only if, for and • Proof: Jia-Ying Chen
Example 4 • Suppose that X and Y have a discrete joint distribution for which the joint p.f. is defined as follow: • a. Determine the marginal p.f.’s of X and Y • b. Are X and Y independent? Jia-Ying Chen
Solution Jia-Ying Chen
Discrete and Continuous Conditional Distributions • Suppose that X and Y have a joint p.m.f. f (x, y), then we can define the conditional p.m.f. g1 of x given that Y = y as • Suppose that X and Y have a joint p.d.f. f(x,y), then we can define the conditional p.d.f. g1 of X given that Y=y as Jia-Ying Chen
Example 5 (3.6.7) • Suppose that the joint p.d.f of two random variables X and Y is as follows: • Determine (a) the conditional p.d.f of Y for every given value of X, and (b) Jia-Ying Chen
Solution Jia-Ying Chen