1 / 32

GPU History CUDA Intro

GPU History CUDA Intro. Graphics Pipeline Elements. A scene description: vertices, triangles, colors, lighting Transformations that map the scene to a camera viewpoint “Effects”: texturing, shadow mapping, lighting calculations Rasterizing: converting geometry into pixels

kylee
Download Presentation

GPU History CUDA Intro

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GPU HistoryCUDA Intro

  2. Graphics Pipeline Elements • A scene description: vertices, triangles, colors, lighting • Transformations that map the scene to a camera viewpoint • “Effects”: texturing, shadow mapping, lighting calculations • Rasterizing: converting geometry into pixels • Pixel processing: depth tests, stencil tests, and other per-pixel operations.

  3. A Fixed Function GPU Pipeline Host CPU Host Interface GPU Vertex Control Vertex Cache VS/T&L Triangle Setup Raster Frame Buffer Memory Texture Cache Shader ROP FBI

  4. Texture Mapping Example Texture mapping example: painting a world map texture image onto a globe object.

  5. Programmable Vertex and Pixel Processors 3D Applicationor Game 3D API Commands CPU 3D API:OpenGL or Direct3D CPU – GPU Boundary GPU GPU Command & Data Stream Assembled Polygons, Lines, and Points Pixel Location Stream Vertex Index Stream Pixel Updates GPUFront End RasterOps PrimitiveAssembly Rasterization & Interpolation Framebuffer Pre-transformed Vertices RasterizedPre-transformedFragments Transformed Vertices TransformedFragments ProgrammableVertexProcessor ProgrammableFragmentProcessor An example of separate vertex processor and fragment processor in a programmable graphics pipeline

  6. What is (Historical) GPGPU ? • General Purpose computation using GPU and graphics API in applications other than 3D graphics • GPU accelerates critical path of application • Data parallel algorithms leverage GPU attributes • Large data arrays, streaming throughput • Model is SPMD • Low-latency floating point (FP) computation • Applications – see http://gpgpu.org • Game effects (FX) physics, image processing • Physical modeling, computational engineering, matrix algebra, convolution, correlation, sorting

  7. Tesla GPU • NVIDIA developed a more general purpose GPU • Can programming it like a regular processor • Must explicitly declare the data parallel parts of the workload • Shader processors  fully programming processors with instruction memory, cache, sequencing logic • Memory load/store instructions with random byte addressing capability • Parallel programming model primitives; threads, barrier synchronization, atomic operations

  8. CUDA • “Compute Unified DeviceArchitecture” • General purpose programming model • User kicks off batches of threads on the GPU • GPU = dedicated super-threaded, massively data parallel co-processor • Targeted software stack • Compute oriented drivers, language, and tools • Driver for loading computation programs into GPU • Standalone Driver - Optimized for computation • Interface designed for compute – graphics-free API • Data sharing with OpenGL buffer objects • Guaranteed maximum download & readback speeds • Explicit GPU memory management

  9. CUDA Devices and Threads • A compute device • Is a coprocessor to the CPU or host • Has its own DRAM (device memory)‏ • Runs many threadsin parallel • Is typically a GPU but can also be another type of parallel processing device • Data-parallel portions of an application are expressed as device kernels which run on many threads • Differences between GPU and CPU threads • GPU threads are extremely lightweight • Very little creation overhead • GPU needs 1000s of threads for full efficiency • Multi-core CPU needs only a few

  10. Texture Texture Texture Texture Texture Texture Texture Texture Texture Host Input Assembler Thread Execution Manager Parallel DataCache Parallel DataCache Parallel DataCache Parallel DataCache Parallel DataCache Parallel DataCache Parallel DataCache Parallel DataCache Load/store Load/store Load/store Load/store Load/store Load/store Global Memory G80 CUDA mode – A Device Example • Processors execute computing threads • New operating mode/HW interface for computing

  11. Arrays of Parallel Threads threadID 0 1 2 3 4 5 6 7 … float x = input[threadID]; float y = func(x); output[threadID] = y; … • A CUDA kernel is executed by an array ofthreads • All threads run the same code (SPMD)‏ • Each thread has an ID that it uses to compute memory addresses and make control decisions

  12. 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 threadID … float x = input[threadID]; float y = func(x); output[threadID] = y; … … float x = input[threadID]; float y = func(x); output[threadID] = y; … … float x = input[threadID]; float y = func(x); output[threadID] = y; … Thread Blocks: Scalable Cooperation • Divide monolithic thread array into multiple blocks • Threads within a block cooperate via shared memory, atomic operations and barrier synchronization • Threads in different blocks cannot cooperate • Up to 65535 blocks, 512 threads/block Thread Block 1 Thread Block N - 1 Thread Block 0 …

  13. Block IDs and Thread IDs • We launch a “grid” of “blocks” of “threads” • Each thread uses IDs to decide what data to work on • Block ID: 1D or 2D • Thread ID: 1D, 2D, or 3D • Simplifies memoryaddressing when processingmultidimensional data • Image processing • Solving PDEs on volumes • …

  14. CUDA Memory Model Overview • Global memory • Main means of communicating R/W Data between host and device • Contents visible to all threads • Long latency access Grid Block (0, 0)‏ Block (1, 0)‏ Shared Memory Shared Memory Registers Registers Registers Registers Thread (0, 0)‏ Thread (1, 0)‏ Thread (0, 0)‏ Thread (1, 0)‏ Host Global Memory

  15. CUDA Device Memory Allocation • cudaMalloc() • Allocates object in the device Global Memory • Requires two parameters • Address of a pointer to the allocated object • Size of allocated object • cudaFree() • Frees object from device Global Memory • Pointer to freed object Grid Block (0, 0)‏ Block (1, 0)‏ Shared Memory Shared Memory Registers Registers Registers Registers Thread (0, 0)‏ Thread (1, 0)‏ Thread (0, 0)‏ Thread (1, 0)‏ Host Global Memory • DON’T use a CPU pointer in a GPU function !

  16. CUDA Device Memory Allocation (cont.)‏ • Code example: • Allocate a 64 * 64 single precision float array • Attach the allocated storage to Md • “d” is often used to indicate a device data structure TILE_WIDTH = 64; float* Md; int size = TILE_WIDTH * TILE_WIDTH * sizeof(float); cudaMalloc((void**)&Md, size); cudaFree(Md);

  17. CUDA Host-Device Data Transfer • cudaMemcpy() • memory data transfer • Requires four parameters • Pointer to destination • Pointer to source • Number of bytes copied • Type of transfer • Host to Host • Host to Device • Device to Host • Device to Device • Non-blocking/asynchronous transfer Grid Block (0, 0)‏ Block (1, 0)‏ Shared Memory Shared Memory Registers Registers Registers Registers Thread (0, 0)‏ Thread (1, 0)‏ Thread (0, 0)‏ Thread (1, 0)‏ Host Global Memory

  18. CUDA Host-Device Data Transfer(cont.) • Code example: • Transfer a 64 * 64 single precision float array • M is in host memory and Md is in device memory • cudaMemcpyHostToDevice and cudaMemcpyDeviceToHost are symbolic constants cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice); cudaMemcpy(M, Md, size, cudaMemcpyDeviceToHost);

  19. Executed on the: Only callable from the: __device__ float DeviceFunc()‏ device device __global__ void KernelFunc()‏ device host __host__ float HostFunc()‏ host host CUDA Function Declarations • __global__ defines a kernel function • Must return void • __device__ and __host__ can be used together

  20. Code Example __global__ void add(int a, int b, int *c) { *c = a + b; } int main() { int a,b,c; int *dev_c; a=3; b=4; cudaMalloc((void**)&dev_c, sizeof(int)); add<<<1,1>>>(a,b,dev_c); // 1 Block and 1 Thread/Block cudaMemcpy(&c, dev_c, sizeof(int), cudaMemcpyDeviceToHost); printf("%d + %d is %d\n", a, b, c); cudaFree(dev_c); return 0; }

  21. Sequential Code – Adding Arrays #define N 10 void add(int *a, int *b, int *c) { int tID = 0; while (tID < N) { c[tID] = a[tID] + b[tID]; tID += 1; } } int main() { int a[N], b[N], c[N]; // Fill Arrays for (int i = 0; i < N; i++) { a[i] = i, b[i] = 1; } add (a, b, c); for (int i = 0; i < N; i++) { printf("%d + %d = %d\n", a[i], b[i], c[i]); } return 0; }

  22. CUDA Code – Adding Arrays int main() { int a[N], b[N], c[N]; int *dev_a, *dev_b, *dev_c; cudaMalloc((void **) &dev_a, N*sizeof(int)); cudaMalloc((void **) &dev_b, N*sizeof(int)); cudaMalloc((void **) &dev_c, N*sizeof(int)); // Fill Arrays for (int i = 0; i < N; i++) { a[i] = i, b[i] = 1; } cudaMemcpy(dev_a, a, N*sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(dev_b, b, N*sizeof(int), cudaMemcpyHostToDevice); add<<<N,1>>>(dev_a, dev_b, dev_c); cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost); for (int i = 0; i < N; i++) { printf("%d + %d = %d\n", a[i], b[i], c[i]); } return 0; } #include "stdio.h" #define N 10 __global__ void add(int *a, int *b, int *c) { int tID = blockIdx.x; if (tID < N) { c[tID] = a[tID] + b[tID]; } }

  23. Julia Fractal • Evaluates an iterative equation for points in the complex plane • A point is not in the set if iterating diverges and approaches infinity • A point is in the set if iterating remains bounded • Equation • Zn+1=Zn2+ C • Where Z is a point in the complex plane, C is a constant • Our implementation uses the freeimage library

  24. CPU Fractal Implementation • Structure to store, multiply, and divide complex numbers #include "FreeImage.h" #include "stdio.h" #define DIM 1000 structcuComplex { float r; float i; cuComplex( float a, float b ) : r(a), i(b) {} float magnitude2( void ) { return r * r + i * i; } cuComplexoperator*(constcuComplex& a) { return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i); } cuComplexoperator+(constcuComplex& a) { return cuComplex(r+a.r, i+a.i); } };

  25. CPU Fractal Implementation • Julia function • intjulia(int x, int y) • { • const float scale = 1.5; • float jx = scale * (float)(DIM/2 - x)/(DIM/2); • float jy = scale * (float)(DIM/2 - y)/(DIM/2); • cuComplex c(-0.8, 0.156); • cuComplex a(jx, jy); • int i = 0; • for (i = 0; i < 200; i++) • { • a = a*a + c; • if (a.magnitude2() > 1000) return 0; • } • return 1; • }

  26. CPU Fractal Implementation • What will become our kernel • Array of char is 0 or 1 to indicate pixel or no pixel • void kernel(char *ptr) • { • for (int y = 0; y<DIM; y++) • for (int x=0; x<DIM; x++) • { • int offset = x + y * DIM; • ptr[offset] = julia(x,y); • } • }

  27. CPU Fractal Implementation • int main() • { • FreeImage_Initialise(); • FIBITMAP * bitmap = FreeImage_Allocate(DIM, DIM, 32); • char charmap[DIM][DIM]; • kernel(&charmap[0][0]); • RGBQUAD color; • for (int i = 0; i < DIM; i++){ • for (int j = 0; j < DIM; j++){ • color.rgbRed = 0; • color.rgbGreen = 0; • color.rgbBlue = 0; • if (charmap[i][j]!=0) • color.rgbBlue = 255; • FreeImage_SetPixelColor(bitmap, i, j, &color); • } • } • FreeImage_Save(FIF_BMP, bitmap, "output.bmp"); • FreeImage_Unload(bitmap); • return 0; • }

  28. GPU Fractal Implementation • Assign the computation of each point to a processor • Use a 2D block and the blockIdx.x and blockIdx.y variables to determine which pixel we should be working on

  29. GPU Fractal • __device__ makes this accessible from the compute device • __device__ structcuComplex { • float r; • float i; • __device__ cuComplex( float a, float b ) : r(a), i(b) {} • __device__ float magnitude2( void ) { return r * r + i * i; } • __device__ cuComplex operator*(constcuComplex& a) { • return cuComplex(r*a.r - i*a.i, i*a.r + r*a.i); • } • __device__ cuComplex operator+(constcuComplex& a) { • return cuComplex(r+a.r, i+a.i); • } • };

  30. GPU Fractal • __device__ intjulia(int x, int y) • { • // Same as CPU version • } • __global__ void kernel(char *ptr) • { • int x = blockIdx.x; • int y = blockIdx.y; • int offset = x + y * DIM; • ptr[offset] = julia(x,y); • }

  31. GPU Fractal int main() { FreeImage_Initialise(); FIBITMAP * bitmap = FreeImage_Allocate(DIM, DIM, 32); char charmap[DIM][DIM]; char *dev_charmap; cudaMalloc((void**)&dev_charmap, DIM*DIM*sizeof(char)); dim3 grid(DIM,DIM); kernel<<<grid,1>>>(dev_charmap); cudaMemcpy(charmap, dev_charmap, DIM*DIM*sizeof(char), cudaMemcpyDeviceToHost);

  32. GPU Fractal RGBQUAD color; for (int i = 0; i < DIM; i++){ for (int j = 0; j < DIM; j++){ color.rgbRed= 0; color.rgbGreen= 0; color.rgbBlue= 0; if (charmap[i][j]!=0) color.rgbBlue= 255; FreeImage_SetPixelColor(bitmap, i, j, &color); } } FreeImage_Save(FIF_BMP, bitmap, "output.bmp"); FreeImage_Unload(bitmap); cudaFree(dev_charmap); return 0; }

More Related