1 / 14

Understanding Map Projection: Transforming Earth's Features

A map projection is a set of rules for transforming features from the three-dimensional Earth onto a two-dimensional display. Multiple projections have been developed, each suited to different purposes, handling properties like Area, Angles, Distance, and Direction. Discover the importance of projections, coordinate systems, georeferencing, georeferences as measurements, placenames, linear referencing, and users of linear referencing in GIS applications.

Download Presentation

Understanding Map Projection: Transforming Earth's Features

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Concept of Map Projection

  2. Map Projection A map projection is a set of rules for transforming features from the three-dimensional earth onto a two-dimensional display. No flat representation of the earth can be completely accurate, so many different projections have been developed, each suited to a particular purpose. Map projections differ in the way they handle four properties: Area, Angles, Distance and Direction. Rules: • No projection can preserve all four simultaneously, although some combinations can be preserved, such asArea and Direction • No projection can preserve both Areaand Angles, however. The map-maker must decide which property is most important and choose a projection based on that.

  3. Projections and Coordinates • There are many reasons for wanting to project the Earth’s surface onto a plane, rather than deal with the curved surface • The paper used to output GIS maps is flat • Flat maps are scanned and digitized to create GIS databases • Rasters are flat, it’s impossible to create a raster on a curved surface • The Earth has to be projected to see all of it at once • It’s much easier to measure distance on a plane

  4. Coordinate Systems • Spatial data are referenced to locations on the earth’s surface using coordinate systems • Ensure all map layers share a common coordinate system • Recognized global coordinate systems consist of: • A Spheroid: a mathematical description of the earth’s shape • A Map Projection: a mathematical conversion from spherical to planar coordinates

  5. Map Projection

  6. conformal equal area direction distance Universal Transverse Mercator (UTM) • Projection properties • All Transverse properties • Standard line is a meridian • 60 zone divided • Projection uses • World Map

  7. Georeferencing • Is essential in GIS, since all information must be linked to the Earth’s surface • The method of georeferencing must be: • Unique, linking information to exactly one location • Shared, so different users understand the meaning of a georeference • Persistent through time, so today’s georeferences are still meaningful tomorrow

  8. Georeferences as Measurements • Some georeferences are metric • They define location using measures of distance from fixed places • E.g., distance from the Equator or from the Greenwich Meridian • Others are based on ordering • E.g. street addresses in most parts of the world order houses along streets • Others are only nominal • Placenames do not involve ordering or measuring

  9. Placenames • The earliest form of georeferencing • And the most commonly used in everyday activities • Many names of geographic features are universally recognized • Others may be understood only by locals • Names work at many different scales • From continents to small villages and neighborhoods • Names may pass out of use in time

  10. Linear Referencing • A system for georeferencing positions on a road, street, rail, or river network • Combines the name of the link with an offset distance along the link from a fixed point, most often an intersection

  11. Users of Linear Referencing • Transportation authorities • To keep track of pavement quality, signs, traffic conditions on roads • Police • To record the locations of accidents

  12. Converting Georeferences • GIS applications often require conversion of projections and ellipsoids • These are standard functions in popular GIS packages • Street addresses must be converted to coordinates for mapping and analysis • Using geocoding functions

More Related