1 / 5

理想气体的性质 习题解(部分)

18-8 , 18-9 , 18-11. 理想气体的性质 习题解(部分). 18-8 常温常压下,一定量的某种理想气体 ( 可视为刚性分子自由度为 i ) ,在等压过程中吸热为 Q ,对外作功为 A ,内能增加为 △ E ,试求 A/Q 和 △ E/Q ( 用自由度 i 表示 ) 。 解:等压过程: Q =  v C P dT = v C P △ T 对外作功: A =  P dV = P △ V = v R △ T 内能增加:△ E =  v C V dT = v C V △ T

kylie-bauer
Download Presentation

理想气体的性质 习题解(部分)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 18-8,18-9,18-11 理想气体的性质习题解(部分)

  2. 18-8常温常压下,一定量的某种理想气体(可视为刚性分子自由度为 i ),在等压过程中吸热为 Q,对外作功为 A,内能增加为 △E,试求 A/Q 和 △E/Q (用自由度 i 表示)。 解:等压过程:Q =  v CP dT = v CP △T 对外作功:A =  PdV = P △V = v R △T 内能增加:△E =  v CV dT = v CV △T A / Q = v R △T / v CP △T = R / CP = 2 / ( 2 + i ) △E / Q = v CV △T / v CP △T = CV / CP = i / ( 2 + i )

  3. 18-9某理想气体的等压摩尔热容为 29.1 J·mol-1 · K-1,求它在温度为 273 K 时分子平均转动动能。 解:CP = ( t + r + 2s + 2 ) R / 2  ( t + r + 2s + 2 ) / 2 = CP / R = 29.1 / 8.31 = 3.5 因为当 T = 273 K 时, t = 3 , s = 0 , 所以 r = 2 . 故 E转动 = r kT / 2 = kT = 8.62  10 -5  273 = 0.0235 eV

  4. 18-11证明在恒定体积下,一气体的振动热容由下式给出: ( n = ω/ k ) CV,振动 = R( ω/ kT)2 e ω/kT / ( e ω/kT - 1 )2 求出 T << n和 T >> n 时的极限值。 解:U振动 = kNn / 2 + kNn / ( e n /T - 1 ) CV,振动 = ( U /  T)V /υ = kNn e n /T n /υT2( e n /T - 1 )2 = kNo ( n / T )2e n /T / ( e n /T - 1 )2 = R ( ω/ kT)2 e ω/kT / ( e ω/kT - 1 )2

  5. CV,振动 = R ( ω/ kT)2 e ω/kT / ( e ω/kT - 1 )2 讨论: 1. 当 T << n时, e ω/kT >> 1 , e -ω/kT  0 CV,振动 = R ( ω/ kT)2 e -2ω/kT  0 2. 当 T >> n时, e ω/kT 1 , e ω/kT - 1  ω/ kT CV,振动 = R ( ω/ kT)2 / ω/ kT = R

More Related