1 / 7

Objectives: use inequalities involving angles and sides of triangles

Section 5-5 Inequalities in Triangles SPI 22C: apply the Triangle Inequality Property to determine which sets of side lengths determine a triangle SPI 32E: solve problems involving congruent angles given angle measures expressed algebraically.

Download Presentation

Objectives: use inequalities involving angles and sides of triangles

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Section 5-5 Inequalities in Triangles SPI 22C: apply the Triangle Inequality Property to determine which sets of side lengths determine a triangleSPI 32E: solve problems involving congruent angles given angle measures expressed algebraically • Objectives: • use inequalities involving angles and sides of triangles Comparison Property of Inequality If a = b + c and c > 0, then a > b Example 6 = 2 + 4, with c = 4, then 6 > 2

  2. Using Property to Prove Corollary Corollary to the Triangle Exterior Angle Theorem The measure of an exterior angle of a triangle is greater than the measure of each of its remote interior angles. Write a paragraph proof given the following information. Given: 1 is an exterior angle Prove: m1 > m2 and m1 > m3 3 1 2 Proof: By the Exterior Angle Theorem , m1 = m2 + m3. Since the m2 > 0 and the m3 > 0, you can apply the Comparison Property of Inequality and conclude that m1 > m2 and m1 > m3.

  3. Applying the Corollary x = 45 + 72x = 117

  4. Triangle Properties Theorem 5-10 If two sides of a triangle are not congruent, then the larger angle lies opposite the longer side. If XZ > XY, then mY > mZ. Theorem 5-11 (Converse of Thm 5-10) If two angles of a triangle are not congruent, then the longer side lies opposite the larger angle. If mA > mB, then BC > AC.

  5. Real-World Connection A landscaper is designing a triangular deck. She wants to place benches in the two larger corners. Which corners have the largest angles? Angles B and C have the larger angles, since they are opposite the two longer sides.

  6. Properties of Triangles Theorem 5-12 Triangle Inequality The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

  7. Apply Properties of Triangles Can a triangle have sides with the given lengths? Explain. NO 2 + 7 is not greater than 9 a. 2 m, 7 m, and 9 m b. 4 yd, 6 yd, and 9 yd YES 4 + 6 > 9 6 + 9 > 4 4 + 9 > 6

More Related