1 / 44

Einstein‘s Theory of R elativity

Einstein‘s Theory of R elativity. 9. Einstein‘s Field E quations , Spherical Symmetric Fields,Schwarzschild Metric. Ulrich R.M.E. Geppert. b asic idea of Einstein‘s theory of gravitation :. c alculate for a given distribution of mass and energy ( mass energy )

kyrie
Download Presentation

Einstein‘s Theory of R elativity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Einstein‘sTheoryofRelativity 9. Einstein‘s Field Equations, Spherical SymmetricFields,SchwarzschildMetric Ulrich R.M.E. Geppert U.R.M.E. Zielona Gora

  2. basicideaofEinstein‘stheoryofgravitation: calculatefor a givendistributionofmassandenergy (massenergy) thespace time metricandviceversa GR: gravitationishidden in themetricequ.ofmotionfor a pointlikeparticle in a gravitationalfieldarethegeodesicequations: parameter, e.g. pathlength, ifpathisparametrizedby proper time ⇒geodesicequation U.R.M.E. Zielona Gora

  3. searchingtherelativisticgeneralizationofNewton‘sequ. ofmotion potential energy starting withvariationalprinciple andLagrangian (kinetic – potentialrestenergy) reminder: gravitational potential Lagrangian explicitely: U.R.M.E. Zielona Gora

  4. U.R.M.E. Zielona Gora

  5. generalrelativisticvariationalprinciple: comparison ofbothintegrants: U.R.M.E. Zielona Gora

  6. wherethegravitationis in thesmallperturbation U.R.M.E. Zielona Gora

  7. inverse metric: because: U.R.M.E. Zielona Gora

  8. withmetric : Christoffel symbol the only non-constantmatrixelementsareand the metricisstatic, i.e. 0 0 since U.R.M.E. Zielona Gora

  9. Christoffel symbolcurvaturetensor (only) curvaturetensor curvaturetensor Ricci tensorby (contraction) U.R.M.E. Zielona Gora

  10. staticsphericalsymmetricmassdistribution (stars) sphericallydistributed total masshas a spherical symmetric potential Schwarzschild radius Karl Scwarzschild 1873-1916, foundfirstsolutionof Einstein equation, died due to a skindeseasecontagioned in thedugoutattheRussian front 1915 (Earth)9 mm (Sun)km U.R.M.E. Zielona Gora

  11. curvatureofspace (metric) due toweakfields theonlyremaining Christoffel symbol: the relatedcomponentsofthecurvaturetensor: for, staticgravitationalfield theonlyremainingcomponentofthe Ricci tensor: (fordetailsseeannex) U.R.M.E. Zielona Gora

  12. „derivation“ ofthefieldequations lookforgeneralizationof Newton: (Poisson) distributionofmassas sourceofthefield firstandsecondspatial derivatives ofthefield, second derivative onlylinear since problem: isonlyonecomponentof a tensor, i.e. theequation has NOT thecorrecttransformationproperties U.R.M.E. Zielona Gora

  13. wesearchfor a Riemann tensorequationofthe type „matter“ „field“ remember GR4: energy-momentumtensor since U.R.M.E. Zielona Gora

  14. thelatter in moredetail: since bothpressureandhydrodynamicalvelocitiesarenegligible andonlythe : U.R.M.E. Zielona Gora

  15. GR4: energyandmomentumconservation in a closedsystem in flat space in curvedspace ⇒ is not thecorrectfieldequationsince in general U.R.M.E. Zielona Gora

  16. requirements on the GR generalizationofNewton‘sPoissonequation: 1. fieldequationshouldbetensorequation (reflectstheindependenceofphysicallaws on CS) 2. l.h.s. shouldbe a symmetrictensorof rank 2 as 3. as all fieldequations in physicsitshouldbe a partial differential equationofmaxsecondorder, linear in highestderivation 4. l.h.sshouldbe (as ) solenoidal (divergencefree) 5. in Minkowskispace time: l.h.s. 6. smooth transitiontoNewton‘sformulaif only U.R.M.E. Zielona Gora

  17. wesearchverygenerallyfor an equationof type to bedetermined in accordancewithrequests: 1, 2, 4: existsonlyonetensorthatfulfillstheserequests: because also (GR5, slide 40 and GR7, slide17) and , : Ricci tensor, : curvaturescalar wesearchfor an equation andhavetodeterminefromtherequeststheconstants U.R.M.E. Zielona Gora

  18. request 4: sincealways (metricisalwayssolenoidal): can‘tbedeterminedfromthisequation ⇒determination of coefficient U.R.M.E. Zielona Gora

  19. Bianchi idendity: multiply Bianchi idenditywith symmetryproperties: exchangingtheindices in the 1stor 2nd pair ofthecurvaturetensorchangesthesignofthetensor: U.R.M.E. Zielona Gora

  20. contractionofthetensorsofthe Bianchi – idendity: ⇒ multiplywith : ⇒ rename U.R.M.E. Zielona Gora

  21. multiplywith and insert a Delta-function: raise index foristhel.h.softhefieldequationssolenoidal U.R.M.E. Zielona Gora

  22. determinationofthecoefficientsand: or useresultsofthe non-relativisticlimit (forand) andfor matter atrest (for): insertinto: U.R.M.E. Zielona Gora

  23. request 5: since in theMinkowskilimit (thel.h.s. → 0 ⇒ with (slide 12) verysmall!! U.R.M.E. Zielona Gora

  24. Einstein‘sfieldequations (1915): or, bycontraction replaceby U.R.M.E. Zielona Gora

  25. Einstein‘sfieldequations andtheequationsofmotion arethebasicequationsofgeneralrelativity. U.R.M.E. Zielona Gora

  26. remark on thecosmologicalconstant Riemann scalar thisequationfulfillsconditions 1,2,3,4, but not 5 and 6, l.h.s.=0 in the Minkowskilimitandthe smooth transitiontoNewton‘slimit second derivatives wrtcoordinates⇒hasthedimension HOWEVER Newton‘stheoryworksverywellwithinour solar system: must beverysmall length must bemuch larger thenthediameterofour solar system, i.e. ly U.R.M.E. Zielona Gora

  27. cosmologicalconstantimportantforthevery large-scaleevolutionoftheuniverse „Cosmology“ state oftheartmodelsprefer a non-vanishingcosmlogicalconstantly rememberslide 23: forcontractionther.h.sbecomes thetermr.h.s. andconsideredas a contributiontothemassdensity g cm-3 forcm-2 , 1ly cm one proton in onecubicmeter U.R.M.E. Zielona Gora

  28. External Schwarzschild metric:(e.g. stellar radius) considerstaticsphericalsymmetricmassdistribution: star surroundedbyvacuum: rememberslide 23: forand i.e. Einstein‘sfieldequationssimplifyto U.R.M.E. Zielona Gora

  29. generalansatzfor a sphericalsymmetricmetric: becauseof time reversalinvariance metric static⇒ all coefficientsindependent on bysuitablecoordinatetransformation, thenrename as usualforsphericalcoordinateswith U.R.M.E. Zielona Gora

  30. metrictensor inverse metrictensor U.R.M.E. Zielona Gora

  31. withthe Christoffel symbolscanbecalculated: , (a) , (b) , (c) , (d) , (e) U.R.M.E. Zielona Gora

  32. , (f) , (g) , (h) Christoffel symbols⇒ curvaturetensor ⇒Ricci tensor forfieldequationsonly Ricci tensorisnecessary U.R.M.E. Zielona Gora

  33. remember: in all detail andsimilarily: (littleexercise?) U.R.M.E. Zielona Gora

  34. if if if if if if if U.R.M.E. Zielona Gora

  35. U.R.M.E. Zielona Gora

  36. Einstein equations outside themassdistribution: isfulfilledforandsince⇒ becauseof (D) fromremains ⇒ ⇒ for , i.e. farawayfromthemassdistribution, themetricbecomesMinkowski i.e. hence U.R.M.E. Zielona Gora

  37. insertthisinto (B) and (C): integration: ourchoice: ⇒ outside themassdistribution (forstars Schwarzschild metric: U.R.M.E. Zielona Gora

  38. determinationoftheconstantofintegrationbyuseofNewtonianlimit:determinationoftheconstantofintegrationbyuseofNewtonianlimit: „Schwarzschildradius“ U.R.M.E. Zielona Gora

  39. not a real but a coordinatesingularity singularityat in sphericalcoordinatesissingularatthenorthpole – however, spacetherehasthe same propertiesasanywhereelse, e.g. velocityof a freefallingparticlehasnothingspecialat but radiusisphysicallyspecial: a clockatrestatshowsthe time remember GR1, GR2: is time shownby a clockatrestatinfinity (coordinate time) divergesif i.e. a photonemittedathas an infinite redshift ⇒ is not a suitable time coordinatefor starwitradius: black hole, from ist surfacecannophotonreachregion U.R.M.E. Zielona Gora

  40. Annex U.R.M.E. Zielona Gora

  41. calculationofthe Christoffel symbol general: the inverse of sincegravitational potential isstatic, onlythespacial derivatives are different fromzero, i.e., (not ), but onlycomponentsaredependent on U.R.M.E. Zielona Gora

  42. calculationofthecurvaturetensor general: sinceonly is , and U.R.M.E. Zielona Gora

  43. calculationofthecurvaturescalar U.R.M.E. Zielona Gora

  44. considerthe 3rdterm: rename and find: U.R.M.E. Zielona Gora

More Related