1 / 6

Formal Proofs and Quantifiers

Language, Proof and Logic. Formal Proofs and Quantifiers. Chapter 13. 13.1.  Elim :. x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced

Download Presentation

Formal Proofs and Quantifiers

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Language, Proof and Logic Formal Proofs and Quantifiers Chapter 13

  2. 13.1  Elim: x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced P(x), Q(x) --- any wffs only containing x free P(c), Q(c) --- the results of replacing in P(x), Q(x) all free occurrences of x by c P(t) --- the results of replacing in P(x) all free occurrences of x by t Universal quantifier rules xP(x) … P(t)  Intro (General Cond. Proof):  Intro (Universal introduct.): c P(c) … Q(c) x[P(x)Q(x)] c … Q(c) xQ(x) You try it, pp. 353, 354

  3. 13.2 Existential quantifier rules  Intro:  Elim: P(t) … xP(x) xP(x) … c P(c) … Q Q x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced P(x) --- any wff only containing x free P(c) --- the results of replacing in P(x) all free occurrences of x by c P(t) --- the results of replacing in P(x) all free occurrences of x by t You try it, pp. 358

  4. 13.3.a Strategy and tactics General tips: 1. Always be clear about the meaning of the sentences you are using. Practically zero chance to succeed without that! 2. A good strategy is to find an informal proof and then try to formalize it. 3. Working backwards can be very useful in proving universal claims. You typically use  Intro in these cases. 4. Working backwards ( Intro) is not useful in proving an existential claim xS(x) unless you can think of a particular instance S(c) of the claim that follows from the premises. 5. If you get stuck, consider using proof by contradiction.

  5. 13.3.b Formal proof: 1.x[Tet(x)  Small(x)] 2.x[Small(x)  LeftOf(x,b)] 3. c Tet(c)  Small(c) 4. Small(c) Elim: 3 5. Small(c)  LeftOf(c,b)]  Elim: 2 6. LeftOf(c,b) Elim: 4,5 7. xLeftOf(x,b) Inro: 6 8.xLeftOf(x,b)  Elim: 1, 3-7 x[Tet(x)Small(x)] x[Small(x)LeftOf(x,b)] xLeftOf(x,b) Strategy and tactics Informal proof: Look, Bozo, we are told that there is a small tetrahedron. So we know that it is small, right? But we’re also told that anything that’s small is left of b. So if it’s small, it’s got to be left of b, too. So, something is left of b, namely, the small tetrahedron. You try it, p.366

  6. 13.4 Soundness and completeness As in the propositional case, we have: Q is provable in Fitch from premises P1,…, Pn if (completeness) and only if (soundness) Q is a FO consequence of P1,…, Pn

More Related