60 likes | 244 Views
Language, Proof and Logic. Formal Proofs and Quantifiers. Chapter 13. 13.1. Elim :. x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced
E N D
Language, Proof and Logic Formal Proofs and Quantifiers Chapter 13
13.1 Elim: x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced P(x), Q(x) --- any wffs only containing x free P(c), Q(c) --- the results of replacing in P(x), Q(x) all free occurrences of x by c P(t) --- the results of replacing in P(x) all free occurrences of x by t Universal quantifier rules xP(x) … P(t) Intro (General Cond. Proof): Intro (Universal introduct.): c P(c) … Q(c) x[P(x)Q(x)] c … Q(c) xQ(x) You try it, pp. 353, 354
13.2 Existential quantifier rules Intro: Elim: P(t) … xP(x) xP(x) … c P(c) … Q Q x --- variable t --- constant term (variable-free term) c --- constant that does not occur outside the subproof where it is introduced P(x) --- any wff only containing x free P(c) --- the results of replacing in P(x) all free occurrences of x by c P(t) --- the results of replacing in P(x) all free occurrences of x by t You try it, pp. 358
13.3.a Strategy and tactics General tips: 1. Always be clear about the meaning of the sentences you are using. Practically zero chance to succeed without that! 2. A good strategy is to find an informal proof and then try to formalize it. 3. Working backwards can be very useful in proving universal claims. You typically use Intro in these cases. 4. Working backwards ( Intro) is not useful in proving an existential claim xS(x) unless you can think of a particular instance S(c) of the claim that follows from the premises. 5. If you get stuck, consider using proof by contradiction.
13.3.b Formal proof: 1.x[Tet(x) Small(x)] 2.x[Small(x) LeftOf(x,b)] 3. c Tet(c) Small(c) 4. Small(c) Elim: 3 5. Small(c) LeftOf(c,b)] Elim: 2 6. LeftOf(c,b) Elim: 4,5 7. xLeftOf(x,b) Inro: 6 8.xLeftOf(x,b) Elim: 1, 3-7 x[Tet(x)Small(x)] x[Small(x)LeftOf(x,b)] xLeftOf(x,b) Strategy and tactics Informal proof: Look, Bozo, we are told that there is a small tetrahedron. So we know that it is small, right? But we’re also told that anything that’s small is left of b. So if it’s small, it’s got to be left of b, too. So, something is left of b, namely, the small tetrahedron. You try it, p.366
13.4 Soundness and completeness As in the propositional case, we have: Q is provable in Fitch from premises P1,…, Pn if (completeness) and only if (soundness) Q is a FO consequence of P1,…, Pn