1 / 21

On mass evolution of CMEs

Li Feng , Bernd Inhester , Yuming Wang , Fang Shen , Chenglong Shen , Weiqun Gan. On mass evolution of CMEs. 1. Max Planck Institute for Solar System Research, Germany 2. Purple Mountain Observatory, China 3. University of Technology and Science , China

Download Presentation

On mass evolution of CMEs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LiFeng,BerndInhester,YumingWang, FangShen,ChenglongShen,WeiqunGan OnmassevolutionofCMEs 1.MaxPlanckInstituteforSolarSystemResearch,Germany 2.PurpleMountainObservatory,China 3.UniversityofTechnologyandScience,China 4.Nationalspacesciencecenter, China ESMP-14Dublin

  2. Outline Massevolution in coronagraph images Trytoanswertwo questions: 1.Why the mass of a CME increases with time, physically does it come from the convected mass fromthelowercoronain the dimming region or the piled-up massofsolar wind? 2. When the mass is convected from the lower corona to the coronagraph FOV, how the flow speed is distributed in a CME? Conclusionandoutlook

  3. Mass calculationfromcoronagraphimages Thomson scattering b/bs:brightnessinunitsofMSB σ:differentialThomsonscatteringcrosssection μ:limbdarkeningcoefficient χ:scatteringangle A,B,C,D:knownfunctionsofthedistanceofthescatteringlocation χ base-difference image COR1+2BLASCOC2COR1+2A CME propagation GCSforwardmodeling Columndensity+pixelsize +He:H=1:10 massineachpixel

  4. Mass images Mass_B:totalmassfromCORB Mass_A: totalmass from CORA

  5. Mass evolution: why does the apparent mass increase? Mass=0.5*(mass_A+mass_B) • Massincreasedueto: • 1.occultereffect:moremassenterstheFOVofcoronagraph? • solarwindplasmapiledupinfrontofaCME? • continuousoutflowfromthelowcoronainthedimmingregion? • Atwhatheightthethreepossibilitiesaredominated,respectively?

  6. Where does the geometricalocculter effect dominated? atlowerheight Truemassevolutionmodelwithoutanocculter:m(h)=m0+Δm(h-hocc) Apparentmassevolutionwithanocculterforaconic-coneCME Red: true evolution Green: apparent evolution Freeparameters: hocc:theheightofaneffectiveocculteredge m0:amodeledinitialmassbelowtheocculteredge Δm:massincreasepersolarradius Beinetal., 2013

  7. Piled-up solar wind mass: snow-plough model Tappinetal.(2006) ρSW(r)andvSW(r)aroundtheCME: 3DMHDsimulation:global3Dsolarwinddistribution(Shenetal.,JGR,2007,2013) Acme=Wface*Wedge*hfront2 distance(Rs)

  8. Compare theevolutionofthe measured mass and the piled-up mass for CME of various speeds:dm/dt measurement model CMEspeed(km/s) 1.dm/dtfromsnowploughmodelislowerandflatter 2.Discrepancybetweenthemeasuredandmodeleddm/dtdecreaseswithtime 3.Piled-upsolarwindmassM_pile:M_pile/M_15Rs=30% 4.Anupperlimit 5.ResultsforeightCMEswithdifferentspeeds:M_pile/M_15Rs=10%~33%

  9. Convected mass from the dimming region Mass=densitydepletion * dimmingarea * dimmingdepth* mi before Dopplervelocity (Tianetal.,2012) after difference 30417119321133594131 CME on 2011-06-21

  10. massloss from the dimming region Mass=densitydepletion(ΔN)* dimmingarea(S) * dimmingdepth(L) * mi Tianetal.(2012) coronagraph DEManalyses(chengetal.2012) dimming 1.Massfromdimming:from40%to50%. 2.Lowerlimit:transitionregionoutflowsrefillthecoronaldimmings S=sumofpixelswhoseEMislessthan85%ofEMbeforetheeruption L=sqrt(S) N=sqrt(EM/L)

  11. Why does the apparent massincrease? • Thegeometricaloccultereffectplaysitsroleatheightbelow7~8Rs. • Thesolarwindpileupcancontributeupto10%~33%ofthemassincoronagraphimages • Themasslossinthedimmingregionisatleast40%~50%ofthemassincoronagraphimagesfortheCMEon2011-06-21. Ifthemassincreasemostlycomesfromthedimmingregion,howisthemassconvectedfromthelowercoronaaccrosstheFOVofcoronagraph? SpeeddistributioninaslowCME(v<500km/s)

  12. SpeeddistributionwithinaCME Undertheassumptionthat the CMEmassall comesfromthelowercorona rend ri m(ri,tj) Themasschangewithtimeinshellsfromritorendisduetothemassflowatr=ri

  13. speed distributionofeachshell v(r,tj)increaseswithdistanceanditdoesnotfollowalinearpattern.

  14. time evolution of thespeedina shell v(ri,t)decreaseswithtime

  15. Locations of theleading edge and theLagrangiantrajectories Lagrangiantrajectoriesofdifferentshells Subjectiveleadingedgepositions

  16. Conclusions • When a CME is within the COR FOV, most of its mass come from the dimming regionandthesolarwindpileuphaslesscontribution. • We derived the speed distribution of each shell in a slowCME,anditincreaseswithdistanceanddecreaseswithtime.

  17. backupslides

  18. Validate the speed distribution:comparingthemeasuredmassprofilestothepredictedprofilesfromV(r,tj) Lax-wendroffschemeisusedtocalculatethemassprofilem(r,ti+1)ingreen fromthemeasuredm(r,ti)inwhite. Orange:measuredm(r,ti+1)

  19. Error analyses ICME: Image noise, pre-CME image subtraction Cplasma: in an average CME, the majority of the plasma is fully ionized He composition: 6%~10% Ce: convert brightness to mass in a pixel according to the Thomson Scattering Propagation direction CME width Regiondefinition Region of interesting /Sector definition

  20. 3DMHDsimulation:global3Dsolarwinddistribution (Shenetal.,JGR,2007,2013) B:Potentialfieldextrapolatedfromphotosphericsynopticmap V:Parker’ssolarwindsolution T:adiabaticprocess N:momentumconservation

More Related