260 likes | 490 Views
A Trip Through Geologic Time. Fossils. Fossils are preserved remains or traces of living things. Most fossils form when living things die and are buried by sediments. The sediments slowly harden into rock and preserve the shape of the organisms.
E N D
Fossils • Fossils are preserved remains or traces of living things. • Most fossils form when living things die and are buried by sediments. • The sediments slowly harden into rock and preserve the shape of the organisms. • Scientists who study fossils are paleontologists.
Fossil The remains of a once living organism, generally one that lived prior to the last glacial period (e.g. 10,000 years before present). They include skeletons, tracks, impressions, trails, borings and casts. Fossils are usually found in hard rock, but not always (e.g. amber).
Fossils • Fossils are usually found in sedimentary rocks. • When an organism dies, its soft parts often decay quickly leaving only the hard parts to fossilize. • Ex. Bones, Shells, Teeth, or Seeds
Kinds of Fossils • Petrified Fossils: fossils in which minerals replace all or part of the organism. Ex: petrified wood • When the object is buried by sediment, water rich in minerals seeps into the cells. After the water evaporates, hardened minerals are left behind.
Kinds of Fossils • Molds and Casts • A mold is a hollow area in sediment in the shape of an organism or part of an organism. • A cast is a copy of the shape of an organism.
Kinds of Fossils • Carbon Films: an extremely thin coating of carbon on rock that forms when materials that make up an organism become gases and escape leaving only carbon behind. • Trace Fossils provide evidence of the activities of ancient organisms. Ex: footprints, animal trails, or animal burrows.
Kinds of Fossils • Preserved Remains are formed when an organism is preserved with little or no change. • For example when organisms become preserved in tar, amber (tree sap), and freezing.
Why Study Fossils? • Scientists study fossils to learn what past life forms were like. • Paleontologists classify organisms in the order in which they lived. • All the information scientists have gathered is called the fossil record.
Fossil Record • The fossil record provides evidence about the history of life on Earth. • The fossil record also shows how different groups of organisms have changed over time. • It also provides evidence to support the theory of evolution.
Remember! • A scientific theory is a well-tested concept that explains a wide range of observations. • The fossil record shows that millions of types of organisms have evolved. • However, many others became extinct.
The Law of Fossil Succession(also known as the law of faunal succession) The kinds of animals and plants found as fossils change over time
Ohio Fossils Ohio’s Trilobite Hunter http://www.dispatch.com/content/stories/science/2014/06/22/trilobite-hunter.html The Paleontology Portal - Ohio http://www.paleoportal.org/index.php?globalnav=time_space§ionnav=state&name=Ohio
D A T I N G R O C K
Ages of Rocks • The relative age of a rock is its age compared to other rocks. Use words like: “older or younger” • The absolute age of a rock is the number of years since the rock was formed. Ex: 358-360 mya
Rock Joke!! • What does a rock want to be when it grows up? • A Rock Star!!
The Position of Rock Layers • It can be difficult to determine a rocks absolute age. So… scientists use the law of superposition. • According to the law of superposition, in horizontal sedimentary rock layers the oldest layer is at the bottom. Each higher layer is younger than the layers below it.
Rock Joke!! • How do rocks wash their clothes? • The Rock Cycle!!
Other Clues to Relative Age • Clues From Igneous Rock • Lava that cools at the surface is called an extrusion. Rock below an extrusion is always older. • Magma that cools beneath the surface is called an intrusion. An intrusion is always younger than the rock layers around an beneath it.
Other Clues to Relative Age • Faults (a break in the rock) are always younger than the rock it cuts through! • Unconformities: An unconformity is a gap in the geological record that can occur when erosion wears away rock layers and other rock layers form on top of the eroded surface.
Using Fossils to Date Rocks! • Scientists use index fossils to match rock layers. • An index fossil must be widely distributed and represent a type of organism that existed only briefly. • They are useful because they tell the relative ages of the rock layers they are found in.
Index Fossils They help in dating other fossils found in the same sedimentary layer. For example, if you find a fossil from an unknown era near a fossil from a known time, you can assume that the two species were from about the same time.
The Trilobite • One example of an index fossil is a trilobite. • Trilobites were a group of hard-shelled animals whose bodies had three distinct parts. • They evolved in shallow seas more than 500 million years ago.
Transitional Form Fossils or organisms that show the intermediate states between an ancestral form and that of its descendants are referred to as transitional forms. There are numerous examples of transitional forms in the fossil record, providing an abundance of evidence for change over time.
Transitional Form Pakicetus (below left), is described as an early ancestor to modern whales. Although pakicetids were land mammals, it is clear that they are related to whales and dolphins based on a number of specializations of the ear, relating to hearing. The skull shown here displays nostrils at the front of the skull. A skull of the gray whale that roams the seas today (below right) has its nostrils placed at the top of its skull. It would appear from these two specimens that the position of the nostril has changed over time and thus we would expect to see intermediate forms. Note that the nostril placement in Aetiocetus is intermediate between the ancestral form Pakicetus and the modern gray whale — an excellent example of a transitional form in the fossil record!