1 / 28

MVSIS

MVSIS. MVSIS Group Minxi Gao,, Jie-Hong Jiang, Yunjian Jiang , Yinghua Li, Subarna Sinha and Robert K. Brayton Dept. of Electrical Engineering and Computer Science University of California, Berkeley. Outline. Motivation: From binary to multi-value Design specification MVSIS optimizations

laith-grant
Download Presentation

MVSIS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MVSIS MVSIS Group Minxi Gao,, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Subarna Sinha and Robert K. Brayton Dept. of Electrical Engineering and Computer Science University of California, Berkeley

  2. Outline • Motivation: From binary to multi-value • Design specification • MVSIS optimizations • Node simplification • Kernel and cube extraction • Pairing and encoding • Network manipulation • Demo • Conclusions

  3. History • Multi-valued logic Incomplete references E. L. Post, “Introdution to a general theory of elementary propositions”,Amer. J. Math., Jun 1921 J. C. Muzio and D. M. Miller, “On the minimization of many-valued functions”,Proc. 9th Int. Symp. Multiple-valued Logic, 1979 S. L. Hurst, “Multiple-valued logic – its status and its future”, IEEE Trans. On Computers, Jun 1984 J. C. Muzio and T. C. Wesselkamper, “Multiple-valued switching theory”Bristol: Hilger, 1986 R. K. Brayton and S. P. Khatri, “Multi-valued logic synthesis”,Proc. 12th Int. Conf. On VLSI Design, Jan 1999

  4. Motivations • Synchronous hardware synthesis • Software synthesis from synchronous specifications • Asynchronous hardware synthesis • Multi-valued devices? • Current-mode CMOS devices • Optical logic circuits

  5. Motivation – synchronous hardware • Design and synthesis from multi-valued logic • Natural method of specification • Larger design space Verilog-MV vl2mv BLIF-MV Two-level MV-PLA synthesis R.Rudell, et al “Espresso-MV”, 1987 MV-Optimize Multi-level FSM synthesis (single MV) L.Lavagno, et al “MIS-MV”, 1990 Opt-Encode Encode FSM state encoding T.Villa, et al, “Nova”, 1990E.Goldberg, et al, “Minsk”, 1999 MVSIS SIS

  6. Motivation – software synthesis • Synchronous programming of embedded systems • Esterel/Lustre/Signal • Interactive FSM semantics • Code generation from logic FSM’s POLIS F.Balerin, et al, “Synthesis of software programsfor embedded control applications”, TCAD 1999 MV-Optimize ESTEREL G.Berry, “The foundations of Esterel”, 2000 Code Gen POLISVCC MVSIS MVSIS Y.Jiang, et al, “Logic optimization and code generationfor embedded control applications”, CODES 2000 C/Assembly

  7. x m x+y vm y Motivation – multi-valued devices • Multi-valued current-mode MOS • signed digit arithmetic • High-speed, Low supply voltage Building blocks Iy Ix IT x y1 y2 T. Hanyu and M. Kameyama, “A 200 MHz pipelined multiplier using 1.5 V-supplymultiple-valued MOS current-mode circuits with dual-rail source-coupled logic”, IEEE Journal of Solid-Statee Circuits, 1995

  8. Each output value is called an i-set F(u,v,w): {0,1} x {0,1,2} x {0,1,2} {0,1,2} 0-set: F{0} = u{0} v{0} + u{0} v{1} w{0,1} 2-set: F{2} = u{1} v{1,2} + u{1} v{0} w{1,2} 1-set: F{1} = <default> Functional Semantics F • Network of MV-nodes • Each variable xn has its own range{0, 1,…, |Pn|-1} • Values are treated uniformly • MV-literal: X{0,2} • MV-cube: X{0,2}Z{0,1} • MV-function Latch

  9. Design Specification .model simple .inputs a b .outputs f .mv f 3 .mv x 3 .table x a b -> f .def 0 0 1 1 1 1 0 - 1 1 1 1 2 0 - 0 2 .reset x 0 .latch f x .exdc .inputs a b .outputs f .table a b -> f .def 0 0 0 1 .end • BLIF-MV subset • Deterministic (no pseudo inputs) • Single output MV nodes • Flat network, no hierarchy • Constant initial states (.reset) • Extension • External don’t care networks (.exdc)

  10. MVSIS Optimization • MVSIS optimizations • Node simplification • Kernel and cube extraction • Pairing • Encoding • Network manipulations

  11. Q1Q2...Qr Di i image P1P2...Pn DCi care set Node Simplification a b c d z 100 11 011 101 0 101 10 111 011 0 110 10 110 110 0 100 11 111 101 1 111 01 100 111 1 100 11 110 110 1 • Two-level: Espresso-MV • Multi-level <default> 2 101 01 100 001 - 010 01 001 101 - Minimize each i-set independently Don’t care: input minterm that produces all output values Partial care: input minterm that produces a subset of output values Compatible observability don’t cares(CODC) Satisfiability don’t cares (SDC) External don’t cares (XDC) mvsis> simplify mvsis> fullsimp mvsis> reset_default

  12. Algebraic Decomposition M. Gao and R. K. Brayton, “Multi-valued Multi-level Network Decomposition”, IWLS, June 2001. • Kernel extraction • Semi-algebraic division • Resubstitution • Factoring/Decomposition • F = a{0,1,2} b{0,1,2,3}c{3} + b{1,2,3} c{3} • + a{0}b{1,2,3} c{0} +a{0} b{0,1,2,3}c{1} [-q]: Two-cube divisors [-g]: Best divisors • = (c{3} +a{0}c{0,1})(a{0,1,2} c{1,3} +b{1,2,3} c{0,3}) mvsis> fx [-q] [-g] mvsis> decomp mvsis> factor mvsis> resub

  13. a b c d x a b c d y 100 11 011 101 0 101 10 111 011 0 110 10 110 110 0 100 11 011 101 0 101 10 111 011 0 <default> 1 <default> 1 merge a b c d z x0y0 z0 100 11 011 101 0 101 10 111 011 0 x0y1 z1 100 11 111 101 1 111 01 100 111 1 110 10 110 110 1 x1y0 z2 x1y1 z3 <empty> 2 <default> 3 Pairing and Encoding • Pair_decode/Merge • Encode • Merge some i-sets Bit-pairing to create multi-valued node Explore different encodings SOP further simplified Output literal count reduced mvsis> pair_decode mvsis> merge mvsis> encode mvsis> elim_part

  14. Other Commands • Network manipulations • IO interface • Verification Printing Sequential mvsis> eliminate mvsis> collapse Mvsis> sweep mvsis> print_stats mvsis> print_factor mvsis> print_range mvsis> print_io mvsis> print_value mvsis> print_part_value mvsis> read_blifmv mvsis> read_blif mvsis> write_blifmv mvsis> extract_seq_dc mvsis> validate –m [mdd|simu] mvsis> gen_vec mvsis> simulate mvsis> qcheck

  15. Design Flow • Typical design flow mvsis> source mvsis.script mvsis> encode -i mvsis> source mvsis.scriptb

  16. Example #1 • Matrix multiplication (3 values) .table a21 a22 b12 b22 c22 0 0 - - 0 0 1 - - =b22 0 2 - 0 0 0 2 - 1 2 0 2 - 2 1 1 0 - - =b12 1 1 0 0 0 1 1 0 1 1 1 1 0 2 2 1 1 1 0 1 … … .end #2 X 2 matrix mult over the ring Z_3 .model matmul .inputs a11 a12 a21 a22 .inputs b11 b12 b21 b22 .outputs c11 c12 c21 c22 .mv a11, a12, a21, a22 3 .mv b11, b12, b21, b22 3 .mv c11, c12, c21, c22 3 .table a11 a12 b11 b21 c11 0 0 - - 0 0 1 - - =b21 0 2 - 0 0 0 2 - 1 2 0 2 - 2 1 1 0 - - =b11 1 1 0 0 0 1 1 0 1 1 1 1 0 2 2 1 1 1 0 1 … … .table a11 a12 b12 b22 c12 0 0 - - 0 0 1 - - =b22 0 2 - 0 0 0 2 - 1 2 0 2 - 2 1 1 0 - - =b12 1 1 0 0 0 1 1 0 1 1 1 1 0 2 2 … … .table a21 a22 b11 b21 c21 0 0 - - 0 0 1 - - =b21 0 2 - 0 0 0 2 - 1 2 0 2 - 2 1 1 0 - - =b11 1 1 0 0 0 1 1 0 1 1 1 1 0 2 2 1 1 1 0 1 1 1 1 1 2 1 1 1 2 0 1 1 2 0 2 1 1 2 1 0 1 1 2 2 1 1 2 0 0 0 1 2 0 1 2 1 2 0 2 1 1 2 1 0 1 1 2 1 1 0 … …

  17. [cadntws11:/home/wjiang/mvsis/examples/bob] mvsis UC Berkeley, MVSIS 0.95 (compiled 24-May-01 at 2:19 PM) mvsis> help alias chng_name collapse decomp delete echo elim_part eliminate encode extract_seq_dc factor fullsimp fx gen_vec help history merge pair_decode print print_altname print_factor print_io print_level print_part_value print_range print_stats print_value qcheck quit read_blif read_blifmv reset_default reset_name resub runtime set simplify simulate source sweep unalias undo unset usage validate write_blifmv mvsis> mvsis> read_blifmv matmul-c mvsis> mvsis> chng_name changing to short-name mode mvsis> print_stats matmul: 4 nodes, 4 POs, 128 cubes(sop), 480 lits(sop) mvsis>

  18. mvsis> print_io primary inputs: a b c d e f g h primary outputs: {i} {j} {k} {l} mvsis> mvsis> set autoexec pfs matmul: 4 nodes, 4 POs, 128 cubes(sop), 480 lits(sop), 216 lits(fact.) mvsis> mvsis> print_range {i}: 3 {j}: 3 {k}: 3 {l}: 3 a: 3 b: 3 c: 3 d: 3 e: 3 f: 3 g: 3 h: 3 matmul: 4 nodes, 4 POs, 128 cubes(sop), 480 lits(sop), 216 lits(fact.) mvsis> mvsis> simplify matmul: 4 nodes, 4 POs, 96 cubes(sop), 320 lits(sop), 160 lits(fact.) mvsis> mvsis> reset_default matmul: 4 nodes, 4 POs, 96 cubes(sop), 320 lits(sop), 160 lits(fact.) mvsis>

  19. mvsis> fullsimp matmul: 4 nodes, 4 POs, 96 cubes(sop), 320 lits(sop), 160 lits(fact.) mvsis> mvsis> pair_decode 1 m{0} = a{0}e{2} + e{0} m{1} = a{0}e{1} m{3} = a{1}e{2} + a{2}e{1} n{0} = a{0}f{2} + f{0} n{1} = a{0}f{1} n{3} = a{1}f{2} + a{2}f{1} o{0} = e{0}c{2} + c{0} o{1} = e{0}c{1} o{3} = e{1}c{2} + e{2}c{1} p{0} = f{0}c{2} + c{0} p{1} = f{0}c{1} p{3} = f{1}c{2} + f{2}c{1} q{0} = b{0}g{2} + g{0} q{1} = b{0}g{1} q{3} = b{1}g{2} + b{2}g{1} r{0} = b{0}h{2} + h{0} r{1} = b{0}h{1} r{3} = b{1}h{2} + b{2}h{1} s{0} = g{0}d{2} + d{0} s{1} = g{0}d{1} s{3} = g{1}d{2} + g{2}d{1} t{0} = h{0}d{2} + d{0} t{1} = h{0}d{1} t{3} = h{1}d{2} + h{2}d{1} matmul: 12 nodes, 4 POs, 64 cubes(sop), 184 lits(sop), 160 lits(fact.) mvsis>

  20. mvsis> simplify matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.) mvsis> mvsis> reset_default matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.) mvsis> mvsis> fullsimp matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.) mvsis>

  21. mvsis> print_factor {i}{1} = m{2}q{2} + m{1}q{0} + m{0}q{1} {i}{2} = m{2}q{0} + m{1}q{1} + m{0}q{2} {j}{1} = n{2}r{2} + n{1}r{0} + n{0}r{1} {j}{2} = n{2}r{0} + n{1}r{1} + n{0}r{2} {k}{1} = o{2}s{2} + o{1}s{0} + o{0}s{1} {k}{2} = o{2}s{0} + o{1}s{1} + o{0}s{2} {l}{1} = p{2}t{2} + p{1}t{0} + p{0}t{1} {l}{2} = p{2}t{0} + p{1}t{1} + p{0}t{2} m{0} = a{0} + e{0} m{2} = a{2}e{1} + a{1}e{2} n{0} = a{0} + f{0} n{2} = a{2}f{1} + a{1}f{2} o{0} = c{0} + e{0} o{2} = c{2}e{1} + c{1}e{2} p{0} = c{0} + f{0} p{2} = c{2}f{1} + c{1}f{2} q{0} = b{0} + g{0} q{2} = b{2}g{1} + b{1}g{2} r{0} = b{0} + h{0} r{2} = b{2}h{1} + b{1}h{2} s{0} = d{0} + g{0} s{2} = d{2}g{1} + d{1}g{2} t{0} = d{0} + h{0} t{2} = d{2}h{1} + d{1}h{2} matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.) mvsis>

  22. mvsis> validate -m mdd matmul-c Networks are combinationally equivalent according to MDD method. matmul: 12 nodes, 4 POs, 56 cubes(sop), 96 lits(sop), 96 lits(fact.) mvsis>

  23. [cadntws11:/home/wjiang/mvsis/examples/bob] mvsis UC Berkeley, MVSIS 0.95 (compiled 24-May-01 at 2:19 PM) mvsis> mvsis> read_blifmv red-add.mv mvsis> mvsis> chng_name changing to short-name mode mvsis> mvsis> print_io primary inputs: a b c d e primary outputs: {f} {g} {h} mvsis> mvsis> set autoexec pfs red_adder: 3 nodes, 3 POs, 48 cubes(sop), 240 lits(sop), 69 lits(fact.) mvsis> mvsis> reset_default red_adder: 3 nodes, 3 POs, 48 cubes(sop), 240 lits(sop), 69 lits(fact.) mvsis> mvsis> simplify red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis> mvsis> fullsimp red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis>

  24. mvsis> print_range {f}: 2 {g}: 2 {h}: 2 a: 8 b: 8 c: 8 d: 8 e: 8 red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis> mvsis> encode red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis> mvsis> print_range {f}: 2 o: 2 {g}: 2 p: 2 {h}: 2 q: 2 i: 2 r: 2 j: 2 s: 2 k: 2 t: 2 l: 2 u: 2 m: 2 v: 2 n: 2 w: 2 red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis>

  25. mvsis> simplify red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis> mvsis> fullsimp red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis> mvsis> print_io primary inputs: i j k l m n o p q r s t u v w primary outputs: {f} {g} {h} red_adder: 3 nodes, 3 POs, 15 cubes(sop), 44 lits(sop), 28 lits(fact.) mvsis>

  26. mvsis> read_blifmv red-add.mv red_adder: 3 nodes, 3 POs, 48 cubes(sop), 240 lits(sop), 69 lits(fact.) mvsis> mvsis> help encode Feb 16, 2001 MVSIS(1) encode [-i] [-n] [-s] Encode the whole network into a binary one, considering both output and input constraints. For sequential networks, a latch is encoded with constraints generated from both its inputs and outputs -i keep primary inputs and outputs as multi-valued; add interface nodes between the internal encoded binary network and PI/POs. This option allows validation of the result. -n use natural code -s use NO_COMP rather than ESPRESSO as the intermediate minimization method. The difference is only in performance. Ordinary users should not be concerned with this option. red_adder: 3 nodes, 3 POs, 48 cubes(sop), 240 lits(sop), 69 lits(fact.) mvsis> mvsis> encode -n red_adder: 3 nodes, 3 POs, 1251 cubes(sop), 9432 lits(sop), 577 lits(fact.) mvsis>

  27. mvsis> simplify -t 1000 red_adder: 3 nodes, 3 POs, 315 cubes(sop), 2010 lits(sop), 156 lits(fact.) mvsis> mvsis> simplify -t 1000 -m exact red_adder: 3 nodes, 3 POs, 300 cubes(sop), 1989 lits(sop), 130 lits(fact.) mvsis> mvsis> validate -m mdd red-add-bin.mv Networks differ on (at least) primary output s1 i-set 0 Incorrect input is: 0 x1_b0 1 x1_b1 1 x1_b2 0 x0_b0 0 x0_b1 0 x0_b2 0 y1_b0 0 y1_b1 0 y1_b2 0 y0_b0 0 y0_b1 0 y0_b2 0 cin_b0 0 cin_b1 0 cin_b2 Networks are NOT combinationally equivalent. red_adder: 3 nodes, 3 POs, 300 cubes(sop), 1989 lits(sop), 130 lits(fact.) mvsis>

  28. Conclusions • Multi-valued logic important in various applications • Presented MVSIS, an multi-valued logic synthesis software infrastructure • Release 1.0 on Linux platform (as of June, 2001) • Support registers • Support external don’t care networks • External don’t cares from incomplete specification • Sequential don’t care extraction • Verification based on MDD representations • Bug fixes http://www-cad.eecs.berkeley.edu/Respep/Research/mvsis

More Related