1 / 24

CSCI 3130: Automata theory and formal languages

Fall 2010. The Chinese University of Hong Kong. CSCI 3130: Automata theory and formal languages. LR( 1 ) grammars. Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130. LR(0) parsing review. A  a A b A  ab. 3. 4. 2. 1. a. parser generator. A. CFG G. 5.

lam
Download Presentation

CSCI 3130: Automata theory and formal languages

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fall 2010 The Chinese University of Hong Kong CSCI 3130: Automata theory and formal languages LR(1) grammars Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130

  2. LR(0) parsing review A  aAb A  ab 3 4 2 1 a parser generator A CFG G 5 “PDA” for parsing G error if G is not LR(0) a b A  a•Ab A  a•b A  •aAb A  •ab A  aA•b A  aAb• A  •aAb A •ab Motivation: Fast parsing for programming languages b A  ab•

  3. Parsing computer programs if (n == 0) { return x; } else { return x + 1; } elseStatement Statement Block ifParExpressionStatement ... Block (Expression) ... ... Most programming language CFGs are not LR(0)!

  4. LR(0) parsing review 4 5 3 2 1 a b a b A a b A action state stack  1 S A  aAb | ab a A 1 2 S • • A  a•Ab A  a•b A  •aAb A  •ab A  aA•b A  aAb• 12 2 S A  •aAb A •ab b • • • 122 5 R • A  ab• 3 S 12 • • • 4 R 123

  5. Meaning of LR(0) items NFA transitions to: X  •g A undiscovered part shift focus to subtree rooted at X (if X is nonterminal) b a X • focus A  aX•b A  a•Xb move past subtreerooted at X

  6. Outline of LR(0) parsing algorithm • LR(0) parser has two kinds of actions: • What if: no complete itemis valid there is one valid item,and it is complete reduce (R) shift (S) some valid itemscomplete, some not more than one validcomplete item R / R conflict S / R conflict

  7. Hierarchy of context-free grammars context-free grammars CYK algorithm (slow) allow some conflicts conflicts can be resolved by lookahead LR(1) grammars LR(0) grammars LR(0) parsing algorithm

  8. A CFG that is not LR(0) S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) input: a valid LR(0) items: S  •A, S  •Bc A  •aA, A  •a B  •a, B  •ab, update

  9. A CFG that is not LR(0) S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) input: a peek inside! valid LR(0) items: A  a•A, A  a• B  a•, B  a•b, A  •aA, A  •a S S S A A B S/R, R/R conflicts! A A R(4), R(5), S(6) A a a a a a a c • possible parse trees • •

  10. Lookahead S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) input: a a peek inside! S valid LR(0) items: A  a•A, A  a• B  a•, B  a•b, A  •aA, A  •a A A … a a • action: shift parse tree must look like this

  11. Lookahead S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) input: a a a peek inside! S valid LR(0) items: A  a•A, A  a• A  •aA, A  •a A A A … a a • action: shift parse tree must look like this

  12. Lookahead S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) input: a a a e S valid LR(0) items: A  a•A, A  a• A  •aA, A  •a A A A a a a • action: reduce parse tree must look like this

  13. LR(0) items vs. LR(1) items A LR(1) A LR(0) A A b b a a • • b b a a A A A  a•Ab [A  a•Ab, b] a a b b A  aAb | ab

  14. LR(1) items A A x a b a b • • [A  a•b, x] [A  a•b, e]

  15. Generating an LR(1) parser S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) NFA DFA + stack states are LR(1) items may have S/R, R/R conflicts A CFG is LR(1) if conflicts can always be resolved with one symbol lookahead

  16. NFA for LR(0) parsing a, b: terminals A, B, C: variables a, b, d: mixed strings X: terminal or variable notation e q0 S  •a For every LR(0) item S  •a X A  •X A  X• For every LR(0) item A  •X e A  •C C  •d For every pair of LR(0) items A  •C, C  •d

  17. NFA for LR(1) parsing a, b: terminals A, B, C: variables a, b, d: mixed strings X: terminal or variable notation e q0 [S  •a, e] For every item S  •a X [A  X•, x] [A  •X, x] For every LR(1) item [A  •X, x] e [A  •C, x] [C  •d, y] For every LR(1) item [A  a•Cb, x] and production C  d and every y in FIRST(bx)

  18. Explaining the transitions A A x x b b a X a X • • X [A  •X, x] [A  X•, x] C b A y • d x b a C • e [A  •C, x] [C  •d, y] y ∈ FIRST(bx)

  19. FIRST sets S  A(1) | cB(2)A  aA(3) | a(4)B  a(5) | ab(6) For every y in FIRST(bx) g FIRST(g) A a {a} A {a} x a • b C {a, c} e S [A  •C, x] [C  •d, y] {c} cA {a} BA FIRST(g) are all leftmost terminals in derivations g ⇒ ... ∅ e

  20. Example: Constructing the NFA [S  A•, e] S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) A [A  •aA, e] e [S  •A, e] [A  •a, e] e e . . . q0 [S  B•c, e] e B e [S  •Bc, e] [B  •a,c] e [B  •ab,c]

  21. Example: Constructing the NFA S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) [S  A•, e] A a e A [A  aA•, e] [A  •aA, e] [S  •A, e] [A  a•A, e] e e a [A  •a, e] [A  a•, e] e q0 e c [S  B•c, e] [S  Bc•, e] B e a [S  •Bc, e] [B  •a,c] [B  a•,c] e a b [B  •ab,c] [B  a•b,c] [B  ab•,c]

  22. Example: Convert NFA to DFA LEGEND S  A | Bc A  aA | a B  a | ab shift variable 8 1 2 7 4 5 6 3 shift terminal reduce A [A  a•A, e] [S  •A, e] [A  •aA, e] [A  a•A, e] [S  •Bc, e] [A  •a, e] [A  •aA, e] A a a [A  •aA, e] [A  aA•, e] [B  a•b,c] [A  •a, e] [A  •a, e] [A  a•, e] [A  a•, e] [B  •a,c] [B  a•,c] [B  •ab,c] a b A B c [S  B•c, e] [S  Bc•, e] [B  ab•,c] [S  A•, e]

  23. Example: Resolving conflicts by lookahead LEGEND S  A(1) | Bc(2)A  aA(3) | a(4)B  a(5) | ab(6) shift variable 2 3 shift terminal reduce action action next next [A  a•A, e] [A  a•A, e] shift shift a a [A  •aA, e] [A  •aA, e] shift error [A  •a, e] [A  •a, e] b b [B  a•b,c] [A  a•, e] c reduce A c error [A  a•, e] e e reduce B reduce A [B  a•,c]

  24. Example: Reconstruct the parse tree action state stack [S  •A, e] [A  a•A, e] 1 2 3 4 6 7 8 5 [S  •Bc, e]  1 S [A  •aA, e] [A  •aA, e] [A  •a, e] A a 1 2 S [A  •a, e] [B  a•b,c] [B  •a,c] 12 8 R [A  a•, e] [B  •ab,c] [B  a•,c] 1 6 S A a 7 R 16 B [S  A•, e]  [A  a•A, e] S b [A  •aA, e] [S  B•c, e] A [A  •a, e] B c [A  a•, e] [S  Bc•, e] a A a b c • • • • [A  aA•, e] [B  ab•,c]

More Related