220 likes | 333 Views
5. 磁性与电子态. 5.0 引言 5.1 轨道 , 相互作用与自旋 5.2 原子和分子的磁矩 5.3 晶体的磁矩 5.4 晶体的磁各向异性 5.5 习题. Outline. General remarks Uniaxial cases Cubic crystals Why success limited. Decoupling of Spin from Orbit. Even for a spin-dependent Exc, such as Von Barth and Hedin ( 1972),
E N D
5. 磁性与电子态 5.0 引言5.1 轨道,相互作用与自旋5.2 原子和分子的磁矩5.3 晶体的磁矩5.4 晶体的磁各向异性5.5 习题
Outline General remarksUniaxial cases Cubic crystalsWhy success limited
Decoupling of Spin from Orbit Even for a spin-dependent Exc, such as Von Barth and Hedin (1972), Vsxc = dExc/dr = Vxc0(r)+sVxcm(r,m) The spin-up and spin-down states are decoupled. Total energy depends only on the magnitude of spin polarization, m, but independent of its direction.
Spin-orbit Coupling Causes Anisotropy Spin-orbit coupling Hsl = [(1/4c2r) ¶V/ ¶r]l(r)×s = x( r)l(r)×s Total energy variation Esl(s ) = E(H0+Hsl)- E(H0)
First order energy E(s) = Sx <o|l×s |o> because <o|l|o>=0 Second (even) order energy, E(s )=Sx 2|<o|l×s |e>|2 / (e (o)-e (e)) + h.o.t Mostly between spin-down bands Perturbation Analysis
Directional Dependence Due to orbital character of the o-e pairs near Fermi surface
Perpendicular AnisotropyD.S.Wang et al, PRB47, 14932, 1993 Fe film: coupling <5|lz|5*>=<xz|lz|yz> causes perpendicular anisotropy Singularity occurs when |e (o)-e (e)| <»x
In-plane AnisotropyD.S.Wang et al, JMMM 129, 344, 1994 Co film: coupling <5|ly|1>=<xz|ly|z2> <5*|lx|1>=<yz|lx|z2> causes in-plane anisotropy Singularity occurs when |e (o)-e (e)| <»x
Ni Layers on Cu Substrate J.Henk et al, PRB59, 9332 (1999) For fct, the bulk contribution is nearly correct, but contribution of the sub-surface layer seems wrong.
Distorted Cubic Crystals T.Burkert et al. PRB 69, 104426 (2004)
Cubic Crystals – Early Empirical Authors E(001)-E(111) in meV/atom Remarks bcc Fe fcc Co fcc Ni Experiments -1.4 1.8 2.7 Kondorskii et al /JETP36,188(1973) x x 1.3 Empirical Fritsche et al /J.Phys.F17,943(1987) 7.4 x 10.0
Cubic Crystals - LSDA Authors E(001)-E(111) in meV/atom Remarks bcc Fe fcc Co fcc Ni Experiment -1.4 1.8 2.7 Daalderop et al /PRB41,11919(1990) -0.5 x -0.5 Strange et al /Physica B172,51(1991) -9.6 x 10.5 Trygg et al /PRL75,2871(1995) -0.5 0.5 -0.5 Razee at al /PRB56,8082(1997) -0.95 0.86 0.11 Halilov et al /PRB57,9557(1998) - 0.5 0.3 0.04 -2.6 2.4 1.0 x scaling
Cubic Crystals – LSDA+OP Authors E(001)-E(111) in meV/atom Remarks bcc Fe fcc Co fcc Ni Experiment -1.4 1.8 2.7 Trygg et al /PRL75,2871(1995) -1.8 2.2 -0.5 OP Yang et al. /PRL87,216405(2001) U=1.2 x U=1.9 in eV J=0.8 x J=1.2 in eV Xie et al /PRB69,172404(2004) U=1.15 U=1.41 U=2.95 in eV J=0.97 J=0.83 J=0.28 in eV
Ab Initio Attempt - Summary • Bulk uniaxial cases are good • Surface (interface) layers are fair • Cubic crystals are poor
Uniaxial Case: Two <o|*|e>Pairs Reconsider the second order perturbation, E(s )=-Sx 2|<o|l×s |e>|2 / (e (e)-e (o)) It holds only when e(e)-e(o) > x , and S » 1 . For uniaxial cases, the regular part is in 2nd order (x 2/ D)! When e(e)-e(o) < x , degenerate perturbation applies, E(s )=-S |x <o|l×s |e>| and S » (x2 / | Ñke(o)×Ñke(e)| ). Singular at those k points. Total contribution is in 3rd order (x 3/ D2)!.
Cubic Case: Two <o|*|e>Pairs The second order perturbation, E(s )=-Sx 2|<o|l×s |e>|2 / (e (e)-e (o)) is isotropic. For cubic case, the regular part of anisotropy goes to E(s ) »-Sx 4|<l×s >|4 / (e (e)-e (o))3 , and S » 1 . The contribution is in the 4th order (x2/ D3)! The singular part with, E(s )=-S |x <o|l×s |e>| and S » (x2 / | Ñke(o)×Ñke(e)| ) Singular at those k points. Total contribution is in 3rd order (x 3/ D2)!.
Challenge in Cubic Case • Count the correlation in acceptable accuracy between the nearly degenerate pairs of empty and occupied states around Fermi surface!.
Concluding Comment One can not claim understand unless he can calculate ! - J.C.Slater