310 likes | 418 Views
Combine Observations of Galaxy Clusters to Constrain Cosmological Parameters. Heng Yu ( 余恒 ) & Zong-Hong Zhu Beijing Normal University 2008. 12.12. Outline. Background Method 1: strong lensing cluster Method 2: X-ray gas fraction Method 3: S-Z effect Results. Brief history.
E N D
Combine Observations of Galaxy Clusters to Constrain Cosmological Parameters Heng Yu ( 余恒 ) & Zong-Hong Zhu Beijing Normal University 2008. 12.12
Outline • Background • Method 1: strong lensing cluster • Method 2: X-ray gas fraction • Method 3: S-Z effect • Results
Brief history • 1901 Max Wolf discover Coma cluster • 1933 Zwicky perceive the existence of dark matter from Coma cluster • 1958 Abell published first galaxy cluster catalogue according to the Palomar Observatory Sky Survey (POSS) • 1961-1968 Zwicky give his catalogue with different criteria
X-ray satellite History • 1962 Aerobee Rocket USAF 2 -10 keV • 1970-1973 Uhuru NASA 2-20 keV (1st) • 1978-1981 Einstein NASA 0.2-3.5 keV • 1990-1999 ROSAT Ge/US/UK 0.1 - 2.5 keV • 1993-2000 ASCA Japan 0.4 -12 keV (CCD) • 1999 Chandra NASA 0.1-10 keV • 1999 XMM-Newton ESO 0.1-15 keV • 2005 Sukuza Japan
X-ray Clusters • Luminonious X-ray radiation T > 106 K , P ≈ 1043~1045 erg/s • Extended source β-model (Cavaliere et.al 1978) NFW (Navarro et.al 1997) double-β (Mohr et.al 1999) • Thermal Bremsstrahlung spectrum • 7keV Fe emission line
Bullet Cluster (2006): Direct Evidence of DM arXiv:astro-ph/0608407
Isothermal model β-model Hydrostatic density
Arcs • Integrate to 2-D • Critical surface mass density Here D is angular diameter distance, subscripts stands for source, and d the lens So when Σ>Σcrclusters can generate arcs • The position of tangential critical curve
Observational quantity • Finally, from observation we can get • And model can tell us • then
What we need? • Zd: redshift of cluster [Spectrum] • θarc (”) : position of arcs [Optical HST] • T (keV) : gas temperature [X-ray Spectrum] • β:power index [X-ray surface Brightness] • θc: core radius of X-ray cluster • Zarc: redshift of arcs [Spectrum]
Arc Sample D.J.Sand ApJ 2005 arXiv 0502528: find 104 tangential arcs and 4 radial arcs out of 128 GCs from HST WFPC2 Archive zarc : only 58 arcs out of 27 clusters have redshift value θarc :
Zd & T • Can be found directly at BAX BAX: the X-Rays Clusters Database This database contains information on 1579 groups and clusters of galaxies, and 298 clusters with available temperature measurements http://bax.ast.obs-mip.fr/
Beta & theta_c • Can be choosen In the “Physical data” frame • Then we got the ADS link of all refered literature
Criteria 1) T > 4keV Regular X-ray Morphology (no merging as A2218) 2) Dds / Ds < 1 Angular distance should have physical significance • ∑/∑cr>1 surface mass can genarate arcs
Dashed line: Old sample (Sereno 2004) Solid line: New sample
Gas mass • X-ray gas mass fraction within r2500 is constant with redshift • NFW model
Optimization Algorithm • Popular MCMC (Markov chain Monte Carlo) --CosmoMC Grid + Direct Search --Powell’s UOBYQA algorithm (using Numerical difference to approach directional derivative) --CONDOR http://www.applied-mathematics.net
Grid-search MCMC Multigrid Number of parameters: n Calculation amount: 102n 108 (fixed) n x 104
Method 3: S-Z effect WMAP temperature map with diamonds representing the position of nearby galaxy clusters
Angular distance • SX0 :X-ray surface brightness • dT0 :SZE decrement • Lambda: X-ray cooling function 38 clusters 0.14 < z < 0.9 (Bonamente,2006)
Summary • Lensing cluster, 9 points, sensitive to ΩΛ • X-ray gas fraction,42 points, sensitive to ΩM andDirect Search algorithm is effective • S-Z effect , 38 points, not big enough to do such constrain So Galaxy cluster is an expecting independent object for cosmological constrain !
Thanks! The real world is always complex, but we are approaching the truth !
A2218 X-ray Machacek, 2002 ApJ with Chandra