160 likes | 361 Views
Concept 2. Factoring the Difference of 2 Perfect Squares. What do these words have in common?. Example 1: Simplify. (x + 5)( x - 5). -5x. +5x. x 2. - 25 . Example 2: Simplify. (x + 3y)( x – 3y). -3xy. +3xy. x 2. - 9y 2. Pattern. (a + b)(a – b) = a 2 – b 2.
E N D
Concept 2 Factoring the Difference of 2 Perfect Squares
Example 1: Simplify (x + 5)( x - 5) -5x +5x x2 - 25
Example 2: Simplify (x + 3y)( x – 3y) -3xy +3xy x2 - 9y2
Pattern (a + b)(a – b) = a2 – b2
Example 3: Simplify (x – 8y)( x + 8y) +3xy x2 – 64y2
Example 4: Simplify (2a – 3)( 2a + 3) +3xy 4a2 – 9
Let’s change direction Given: a2 – b2 Factor into: (a + b)(a – b)
Example 5: Factor (x2 – 16) +3xy (x + 4)(x – 4)
Example 6: Factor (x2 – 9y2) (x + 3y)(x – 3y)
Example 7: Factor (x6 – 25y2) (x3 + 5y)(x3 – 5y)
Example 8: Factor (x8 – 144) (x4 + 12)(x4 – 12)
Example 9: Factor (x2 + 121) Prime
Combine Factoring out the GCF with the Difference of 2 Perfect Squares
Example 10: Factor (3x3 – 27x) 3x(x2 – 9) 3x(x + 3)(x – 3)
Example 11: Factor (7x5 – 7x) 7x(x4 – 1) 7x(x2 + 1)(x2 – 1) 7x(x2 + 1)(x + 1)(x – 1)