1 / 32

Joone võrrand

Joone võrrand. 1. aprill 2014. Sirgjoone tõusunurk ja sirge tõus. Vaatleme koordinaatteljestikus paiknevat sirgjoont, mis lõikab x - telge. Selle sirge tõusunurgaks nimetatakse nurka x - telje positiivse suuna ja sirge vahel

lanai
Download Presentation

Joone võrrand

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Joone võrrand 1. aprill 2014 Külli Nõmmiste Jõhvi Gümnaasium

  2. Sirgjoone tõusunurk ja sirge tõus

  3. Vaatleme koordinaatteljestikus paiknevat sirgjoont, mis lõikab x - telge • Selle sirge tõusunurgaks nimetatakse nurka x - telje positiivse suuna ja sirge vahel • nurka mõõdetakse x - telje positiivsest suunast lugedes vastupäeva • Tõusunurk on alati 0 ja 180 vahel • Sirgjoone tõusunurka tähistame tähega 

  4. Kui tõusunurk on teravnurk, siis öeldakse, et sirge tõuseb • kui tõusunurk on nürinurk, siis öeldakse, et sirge langeb

  5. Sirge tõus • Sirge tõusuks nimetatakse selle sirge tõusunurga tangensit • Tõusu tähistatakse tähega k • Tõusva sirge tõus on positiivne • Langeva sirge tõus on negatiivne

  6. Sirge tõus • Sirge tõus näitab, kui palju muutub sirgel liikuva punkti y- koordinaat, kui x-koordinaat kasvab ühe ühiku võrra k = 2

  7. Kui sirge on paralleelne x - teljega, siis  = 0 ja k = 0 Kui sirge on paralleelne y - teljega, siis  = 90  ja k ei ole määratud, sest tan90 ei ole määratud Koordinaattelgedega paralleelsed sirged

  8. Paralleelsete sirgete tõusud • Paralleelsete sirgete tõusunurgad on võrdsed, järelikult neil sirgetel on ka ühesugune tõus

  9. Sirge võrrand

  10. Punkti ja tõusuga määratud sirge võrrand • Sirge on määratud punktiga A(x1;y1)ja tõusuga k • Valime vabalt sirgel punkti P(x;y) • asendame koordinaatide väärtused sirge tõusu valemisse ning saame , siit • Punkti ja tõusuga määratud sirge võrrand y – y1= k(x – x1)

  11. Näide • Leia sirge võrrand, kui sirge tõusunurk on 30 ja sirge läbib punkti A(9;0) • y – y1= k(x – x1) • Leiame tõusuk = tan 30  = • Asendame punkti koordinaadid valemisse:y – 0 = (x – 9)y = x –

  12. Tõusu ja algordinaadiga määratud sirge võrrand • Tõusu ja algordinaadiga määratud sirge võrrand on kujul y = kx + b, kus • k on sirge tõus ja • b on algordinaat • Algordinaadiks nimetatakse sirge ja y-telje lõikepunkti ordinaati

  13. Näide • Leia sirge võrrand, kui sirge tõus on k = 2 ja algordinaat b = -3 • y = kx + b • Asendame väärtused valemissey = 2x + (-3)y = 2x – 3

  14. Kahe punktiga määratud sirge võrrand • Sirge s on määratud punktidega A(x1; y1) ja B(x2; y2) • Kahe punktiga määratud sirge võrrand

  15. Näide • Leia punkte P(-7; 4) ja Q(-8; -1) läbiva sirge võrrandi ja kontrolli, kas punkt A(7; 72) asub sellel sirgel • Asendame punktide koordinaadid valemisse • Kontrollime, kas punkti A koordinaadid rahuldavad saadud võrrandit

  16. Sirge võrrand telglõikudes • Juhul kui sirge on määratud punktidega, milles see sirge lõikab koordinaattelgi • Arve a ja b nimetetaksetelglõikudeks • Telglõikude abil lihtsustub sirgjoone konstrueerimine

  17. Näide • Kirjuta sirge võrrand, kui sirge läbib punkte (-2;0) ja (0;3) • Antud punktid on otsitava sirge lõikepunktideks koordinaattelgede ja seega saame punktide koordinaatidest välja lugeda telglõigud:a = -2 ja b = 3 • Asendame telglõigud valemisse

  18. Koordinaattelgedega paralleelsete sirgete võrrandid • y-teljega paralleelse sirge võrrandx = a • x-teljega paralleelse sirge võrrandy = b

  19. Punkti ja sihivektoriga määratud sirge võrrand • Sirge sihivektoriks nimetatakse iga vektorit, mille siht langeb kokku sirge sihiga • sihivektorit tähistatakse • Punkti ja sihivektoriga määratud sirge võrrand

  20. Näide • Leia sirge võrrand, kui sirge läbib punkti A(4; -1) ja sirge sihivektor on • Asendame väärtused valemisse

  21. Sirge üldvõrrand • Ükskõik millisel kujul sirge võrrandit on võimalik teisendada kujule Ax + By + C = 0 • Saadud võrrandit nimetatakse sirge üldvõrrandiks • Sirge tõus • Sirge üks sihivektor

  22. Kahe sirge vastastikused asendid

  23. Kahe sirge vastastikused asendid

  24. Nurk kahe sirge vahel • Kahe sirge lõikumisel tekib kaks paari võrdseid nurki • Kui ühe nurga suurus on φ, siis tema kõrvunurga suurus on 180 - φ • Kokkuleppeliselt loetakse kahe sirge vaheliseks nurgaks seda nurka, mis on teravnurk • Nurka kahe sirge vahel on võimalik arvutada valemist:

  25. Kahe sirge lõikepunkt • Kahe sirge lõikepunkti võib leida: • jooniselt (ei ole alati täpne) • arvutuslikult • sirgete võrranditest koostatakse võrrandisüsteem ja lahendatakse sobiva lahendusmeetodiga: • liitmisvõte • asendusvõte • determinantide abil

  26. Näide • Koosta sirge võrrand, teades, et sirge läbib punkti (2; -3) ja on risti sirgega 4x – 3y – 6 = 0 • Teisendame sirge võrrandit • Et sirged peavad olema risti, siis k1·k2 = 1, seega otsitava sirge tõusu k2 leiame seosest

  27. Näide jätkub • Seega otsitava sirge võrrandi leiame valemiy – y1= k(x – x1) abil

  28. Ringjoone võrrand

  29. Ringjoon • Ringjooneks nimetatakse antud punktist jääval kaugusel asetsevate punktide hulka tasandil • Punkti O nimetatakse ringjoone keskpunktiks • jäävat kaugust r ringjoone raadiuseks

  30. Ringjoone võrrand • Ringjoone võrrand, kui ringjoone keskpunkt on (a; b) ja raadius r: (x – a)2 +(y – b)2 = r2 • antud võrrandit nimetatakse ringjoone kanooniliseks võrrandiks • Kui ringjoone keskpunkt on punktis O(0; 0), siis saab ringjoone võrrand kuju x2 + y2 = r2

  31. Näide • Kas võrrand x2 + y2 + 4x – 8y + 11 = 0 on ringjoone võrrand? Kui on siis leia ringjoone keskpunkt ja raadius. • Täisruudu eraldamise võte: x2 + y2 + 4x – 8y + 11 = 0 x2 + y2 + 4x – 8y = –11 (x2 + 4x) + (y2 – 8y) = –11 (x2 + 4x + 4) + (y2 – 8y + 16) = –11 + 4 + 16 (x – 2)2 + (y – 4)2 = 9 • O(2; 4), r = 3

More Related