1 / 72

Computer programming

Computer programming. Dr. Ivan A. Hashim. MATLAB.

lancaster
Download Presentation

Computer programming

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Computer programming Dr. Ivan A. Hashim

  2. MATLAB MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include: • Math and computation • Algorithm development • Data acquisition • Modeling, simulation, and prototyping • Data analysis, exploration, and visualization • Scientific and engineering graphics • Application development, including graphical user interface building

  3. MATLAB Desktop

  4. Matrices and Arrays • Entering Matrices • Separate the elements of a row with blanks or commas. • Use a semicolon (;) to indicate the end of each row. • Surround the entire list of elements with square brackets, [ ]. A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1]

  5. Matrices and Arrays >> A = [16 3 2 13; 5 10 11 8; 9 6 7 12; 4 15 14 1] A = 16 3 2 13 5 10 11 8 9 6 7 12 4 15 14 1

  6. Matrices and Arrays • Subscripts >> A(1,3)+A(2,2)+A(3,4)+A(4,1) ans = 28

  7. Matrices and Arrays • The Colon Operator (:) >> 1:10 1 2 3 4 5 6 7 8 9 10 >> 1:2:10 1 3 5 7 9 >> 100:-7:50 100 93 86 79 72 65 58 51

  8. Matrices and Arrays • The Colon Operator (:) >> A(2,:) >> A(:,3) 5 10 11 8 ans = 2 11 7 14

  9. Matrices and Arrays • The Colon Operator (:) >> A(1:2,1:3) ans = 16 3 2 5 10 11

  10. Matrices and Arrays • The Colon Operator (:) >> A(1:2,2:end) ans = 3 2 13 10 11 8

  11. Matrices and Arrays • The Colon Operator (:) >> A(2:3,3:4) ans = 11 8 7 12

  12. Matrices and Arrays • The Colon Operator (:) >> A(1:3,2:4) ans = 3 2 13 10 11 8 6 7 12

  13. Matrices and Arrays • The Colon Operator (:) >> A([1 3],:) ans = 16 3 2 13 9 6 7 12

  14. Matrices and Arrays • The Colon Operator (:) >> A(:,[1 4]) ans = 16 13 5 8 9 12 4 1

  15. Matrices and Arrays • The Colon Operator (:) >> A([1 3],[1 4]) ans = 16 13 9 12

  16. Matrices and Arrays Functions >> det(A) >> inv(A) ans = 1.0871e-12 ans = 1.0e+15 * 0.1251 0.3753 -0.3753 -0.1251 -0.3753 -1.1259 1.1259 0.3753 0.3753 1.1259 -1.1259 -0.3753 -0.1251 -0.3753 0.3753 0.1251

  17. Matrices and Arrays Functions >> diag(A) ans = 16 10 7 1

  18. Matrices and Arrays Functions >> length(A) >> length(B) ans = 4 ans = 8

  19. Matrices and Arrays Functions >> numel(A) >> numel(B) ans = 16 ans = 8

  20. Matrices and Arrays Functions >> size(A) >> size(B) ans = 4 4 ans = 1 8

  21. Matrices and Arrays Functions >> max(A) >> max(B) ans = 16 15 14 13 ans = 9 >> max(max(A)) ans = 16

  22. Matrices and Arrays Functions >> min(A) >> min(B) ans = 4 3 2 1 ans = 0 >> min(min(A)) ans = 1

  23. Matrices and Arrays Functions >> sort(B) >> sort(B,'ascend') ans = 0 1 2 3 5 6 8 9 >> sort(B,'descend') ans = 9 8 6 5 3 2 1 0

  24. Matrices and Arrays Functions >> sort(A) or sort(A,1) >> sort(A,2) ans = 4 3 2 1 5 6 7 8 9 10 11 12 16 15 14 13 ans = 2 3 13 16 5 8 10 11 6 7 9 12 1 4 14 15

  25. Matrices and Arrays Functions >> sum(A) >> sum(B) ans = 34 343434 ans = 34 >> sum(sum(A)) ans = 134

  26. Matrices and Arrays Functions >> tril(A) >> triu(A) ans = 16 0 0 0 5 10 0 0 9 6 7 0 4 15 14 1 ans = 16 3 2 13 0 10 11 8 0 0 7 12 0 0 0 1

  27. Matrices and Arrays Functions >> zeros(3) >> magic(3) ans = 0 0 0 0 0 0 0 0 0 ans = 8 1 6 3 5 7 4 9 2 >> ones(3) >> zeros(3,2) ans = 1 1 1 1 1 1 1 1 1 ans = 0 0 0 0 0 0

  28. Matrices and Arrays Functions >> rand(2,3) >> rand(2) ans = 0.6324 0.2785 0.9575 0.0975 0.5469 0.9649 ans = 0.8147 0.1270 0.9058 0.9134 >> randn(3) ans = -1.3499 -0.0631 -0.1241 3.0349 0.7147 1.4897 0.7254 -0.2050 1.4090

  29. Matrices and Arrays Functions >> mean(A) >> mean(B) ans = 8.5000 8.5000 8.5000 8.5000 ans = 4.2500

  30. Matrices and Arrays Functions >> B' ans = 5 6 8 9 1 3 2 0

  31. Matrices and Arrays Functions >> A' ans = 16 5 9 4 3 10 6 15 2 11 7 14 13 8 12 1

  32. Matrices and Arrays Functions >> A+D >> A*D ans = 18 5 4 15 7 12 13 10 11 8 9 14 6 17 16 3 ans = 68 686868 68 686868 68 686868 68 686868

  33. Matrices and Arrays Functions >> A+5 >> A*3 ans = 21 8 7 18 10 15 16 13 14 11 12 17 9 20 19 6 ans = 48 9 6 39 15 30 33 24 27 18 21 36 12 45 42 3

  34. Matrices and Arrays Functions >> A^2 >> A.^2 ans = 341 285 261 269 261 301 309 285 285 309 301 261 269 261 285 341 ans = 256 9 4 169 25 100 121 64 81 36 49 144 16 225 196 1

  35. Matrices and Arrays Functions >> A.*D >> A./D ans = 32 6 4 26 10 20 22 16 18 12 14 24 8 30 28 2 ans = 8.0 1.5 1.0 6.5 2.5 5.0 5.5 4.0 4.5 3.0 3.5 6.0 2.0 7.5 7.0 0.5

  36. Matrices and Arrays Functions >> A.^D >> sqrt(A) ans = 256 9 4 169 25 100 121 64 81 36 49 144 16 225 196 1 ans = 4.0000 1.7321 1.4142 3.6056 2.2361 3.1623 3.3166 2.8284 3.0000 2.4495 2.6458 3.4641 2.0000 3.8730 3.7417 1.0000

  37. Matrices and Arrays Functions >> flip(A) >> flip(B) ans = 4 15 14 1 9 6 7 12 5 10 11 8 16 3 2 13 ans = 0 2 3 1 9 8 6 5

  38. Matrices and Arrays Functions >> fliplr(A) >> fliplr(B) ans = 13 2 3 16 8 11 10 5 12 7 6 9 1 14 15 4 ans = 0 2 3 1 9 8 6 5

  39. Statistical Functions

  40. Variables • MATLAB does not require any type declarations or dimension statements • When MATLAB encounters a new variable name, it automatically creates the variable and allocates the appropriate amount of storage • If the variable already exists, MATLAB changes its contents num_students = 25 • Variable names consist of a letter, followed by any number of letters, digits, or underscores • MATLAB uses only the first 31 characters of a variable name. MATLAB is case sensitive

  41. Numbers • MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers. Scientific notation uses the letter e to specify a power-of-ten scale factor. Imaginary numbers use either i or j as a suffix. Some examples of legal numbers are 3 -99 0.0001 9.6397238 1.60210e-20 6.02252e23 1i -3.14159j 3e5i • All numbers are stored internally using the long format specified by the IEEE floating-point standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a finite rangeof roughly • 10-308 to 10+308.

  42. Operators

  43. Relational and Logic Operators

  44. Functions

  45. Functions

  46. Special Functions

  47. Basic Plotting Functions • Creating a Plot x = 0:pi/100:2*pi; y = sin(x); plot(x,y)

  48. Basic Plotting Functions • xlabel('x = 0:2\pi') • ylabel('Sine of x') • title('Plot of the Sine Function','FontSize',12)

  49. Basic Plotting Functions • text(1,-1/3,'{\it Sinwave Example.}')

  50. Basic Plotting Functions • Setting Axis Limits • axis([xminxmaxyminymax]) • axis([-1 7 -2 2])

More Related