1 / 29

Motif Finding

Motif Finding. [1]: Ch 4.4-4.6, 4.8-4.10, 5.5, 12.2-12.4. Biological Motivation. Infection from Bacteria and Pathogens (germs) Organisms have immunity genes , usually dormant

landry
Download Presentation

Motif Finding

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Motif Finding [1]: Ch 4.4-4.6, 4.8-4.10, 5.5, 12.2-12.4

  2. Biological Motivation • Infection from Bacteria and Pathogens (germs) • Organisms have immunity genes, usually dormant • Immunity genes “switched on” when organism is infected and produce proteins that destroy Bacteria and Pathogens, and cure • Biologist want to know “Who turned them on?” • For fly substring similarto TCGGGGATTTCC within the gene (i.e., DNA sequence) turn them on • TCGGGGATTTCC is called regulatory motif

  3. Random Sample atgaccgggatactgataccgtatttggcctaggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgacccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatactgggcataaggtacatgagtatccctgggatgacttttgggaacactatagtgctctcccgatttttgaatatgtaggatcattcgccagggtccgagctgagaattggatgaccttgtaagtgttttccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggagatcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatggcccacttagtccacttataggtcaatcatgttcttgtgaatggatttttaactgagggcatagaccgcttggcgcacccaaattcagtgtgggcgagcgcaacggttttggcccttgttagaggcccccgtactgatggaaactttcaattatgagagagctaatctatcgcgtgcgtgttcataacttgagttggtttcgaaaatgctctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgtattggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatttcaacgtatgccgaaccgaaagggaagctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttctgggtactgatagca

  4. Implanting Motif AAAAAAAGGGGGGG atgaccgggatactgatAAAAAAAAGGGGGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgacccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataAAAAAAAAGGGGGGGatgagtatccctgggatgacttAAAAAAAAGGGGGGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccgagctgagaattggatgAAAAAAAAGGGGGGGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggagatcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAAAAAAAAGGGGGGGcttataggtcaatcatgttcttgtgaatggatttAAAAAAAAGGGGGGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaacggttttggcccttgttagaggcccccgtAAAAAAAAGGGGGGGcaattatgagagagctaatctatcgcgtgcgtgttcataacttgagttAAAAAAAAGGGGGGGctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgtattggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatAAAAAAAAGGGGGGGaccgaaagggaagctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttAAAAAAAAGGGGGGGa

  5. Where is the Implanted Motif? atgaccgggatactgataaaaaaaagggggggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgacccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaataaaaaaaaagggggggatgagtatccctgggatgacttaaaaaaaagggggggtgctctcccgatttttgaatatgtaggatcattcgccagggtccgagctgagaattggatgaaaaaaaagggggggtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggagatcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaataaaaaaaagggggggcttataggtcaatcatgttcttgtgaatggatttaaaaaaaaggggggggaccgcttggcgcacccaaattcagtgtgggcgagcgcaacggttttggcccttgttagaggcccccgtaaaaaaaagggggggcaattatgagagagctaatctatcgcgtgcgtgttcataacttgagttaaaaaaaagggggggctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgtattggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcataaaaaaaagggggggaccgaaagggaagctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttaaaaaaaaggggggga

  6. Implanting Motif AAAAAAGGGGGGG with Four Mutations/Changes atgaccgggatactgatAgAAgAAAGGttGGGggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgacccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAAcGGcGGGatgagtatccctgggatgacttAAAAtAAtGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgccagggtccgagctgagaattggatgcAAAAAAAGGGattGtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggagatcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatAtAAtAAAGGaaGGGcttataggtcaatcatgttcttgtgaatggatttAAcAAtAAGGGctGGgaccgcttggcgcacccaaattcagtgtgggcgagcgcaacggttttggcccttgttagaggcccccgtAtAAAcAAGGaGGGccaattatgagagagctaatctatcgcgtgcgtgttcataacttgagttAAAAAAtAGGGaGccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgtattggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatActAAAAAGGaGcGGaccgaaagggaagctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttActAAAAAGGaGcGGa

  7. Where is the Motif??? atgaccgggatactgatagaagaaaggttgggggcgtacacattagataaacgtatgaagtacgttagactcggcgccgccgacccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacaataaaacggcgggatgagtatccctgggatgacttaaaataatggagtggtgctctcccgatttttgaatatgtaggatcattcgccagggtccgagctgagaattggatgcaaaaaaagggattgtccacgcaatcgcgaaccaacgcggacccaaaggcaagaccgataaaggagatcccttttgcggtaatgtgccgggaggctggttacgtagggaagccctaacggacttaatataataaaggaagggcttataggtcaatcatgttcttgtgaatggatttaacaataagggctgggaccgcttggcgcacccaaattcagtgtgggcgagcgcaacggttttggcccttgttagaggcccccgtataaacaaggagggccaattatgagagagctaatctatcgcgtgcgtgttcataacttgagttaaaaaatagggagccctggggcacatacaagaggagtcttccttatcagttaatgctgtatgacactatgtattggcccattggctaaaagcccaacttgacaaatggaagatagaatccttgcatactaaaaaggagcggaccgaaagggaagctggtgagcaacgacagattcttacgtgcattagctcgcttccggggatctaatagcacgaagcttactaaaaaggagcgga

  8. How to Find Regulatory Motif? • How to find regulatory motif from immunity genes • What we know and what we don’t and what we want to find? • We know: • At least one regulatory motif in each immunity gene DNA sequence • They looks similar • Length l of the motif • We don’t know: • The exact pattern of the motif • The location of the motif • Number of occurrence • Want to find • A substring of size l that is close to all regulatory motifs

  9. A Similar Problem • The Motif Finding Problem is similar to the problem posed by Edgar Allan Poe (1809 – 1849) in his Gold Bug story

  10. The Gold Bug Problem • Given a secret message: 53++!305))6*;4826)4+.)4+);806*;48!8`60))85;]8*:+*8!83(88)5*!; 46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5*-4)8`8*; 4069285);)6 !8)4++;1(+9;48081;8:8+1;48!85;4)485!528806*81(+9;48;(88;4(+?3 4;48)4+;161;:188;+?; • Decipher the message encrypted in the fragment

  11. Gold Bug Message: English Language: e t a o i n s r h l d c u m f p g w y b v k x j q z Most frequentLeast frequent Symbol Frequencies in the Gold Bug Message

  12. FirstAttempt • By simply mapping the most frequent symbols to the most frequent letters of the alphabet: sfiilfcsoorntaeuroaikoaiotecrntaeleyrcooestvenpinelefheeosnlt arhteenmrnwteonihtaesotsnlupnihtamsrnuhsnbaoeyentacrmuesotorl eoaiitdhimtaecedtepeidtaelestaoaeslsueecrnedhimtaetheetahiwfa taeoaitdrdtpdeetiwt • The result does not make sense

  13. l-tuple count • A better approach: • Examine frequencies of l-tuples, combinations of 2 symbols, 3 symbols, etc. • “The” is the most frequent 3-tuple in English and “;48” is the most frequent 3-tuple in the encrypted text • Make inferences of unknown symbols by examining other frequent l-tuples

  14. The ;48 clue • Mapping “the” to “;48” and substituting all occurrences of the symbols: 53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e )h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9thet(eeth(+?3ht he)h+t161t:1eet+?t

  15. Second Attempt • Make inferences: 53++!305))6*the26)h+.)h+)te06*the!e`60))e5t]e*:+*e!e3(ee)5*!t h6(tee*96*?te)*+(the5)t5*!2:*+(th956*2(5*h)e`e*th0692e5)t)6!e )h++t1(+9the0e1te:e+1the!e5th)he5!52ee06*e1(+9thet(eeth(+?3ht he)h+t161t:1eet+?t • “thet(ee” most likely means “the tree” • Infer “(“ = “r” • “th(+?3h” becomes “thr+?3h” • Can we guess “+” and “?”?

  16. The Solution • After figuring out all the mappings, the final message is: AGOODGLASSINTHEBISHOPSHOSTELINTHEDEVILSSEATWENYONEDEGRE ESANDTHIRTEENMINUTESNORTHEASTANDBYNORTHMAINBRANCHSEVENT HLIMBEASTSIDESHOOTFROMTHELEFTEYEOFTHEDEATHSHEADABEELINE FROMTHETREETHROUGHTHESHOTFIFTYFEETOUT

  17. The Solution A GOOD GLASS IN THE BISHOP’S HOSTEL IN THE DEVIL’S SEA, TWENY ONE DEGREES AND THIRTEEN MINUTES NORTHEAST AND BY NORTH, MAIN BRANCH SEVENTH LIMB, EAST SIDE, SHOOT FROM THE LEFT EYE OF THE DEATH’S HEAD A BEE LINE FROM THE TREE THROUGH THE SHOT, FIFTY FEET OUT.

  18. Motif Finding is harder than Gold Bug problem • We don’t have the complete dictionary of motifs yet • The “genetic” language does not have a standard “grammar” • Only a small fraction of nucleotide sequences encode for motifs; the size of data is enormous

  19. The Motif Finding Problem • Given random samples of DNA sequences: cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc • Find the pattern/motif of length l that is implanted in each of the individual sequences

  20. The Motif Finding Problem • The patterns revealed with no mutations: cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc acgtacgt Consensus String, this is the motif

  21. The Motif Finding Problem • The patterns with 2 mutations: cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc What is the consensus string here?

  22. Parameters l= 8 cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc DNA t=5 n = 69 s s1= 26s2= 21s3= 3 s4= 56s5= 60

  23. For s = (s1, … st) and DNA Score(s,DNA)= Find s with maximum score What is the best/worst score? a G g t a c T t C c A t a c g t a c g t T A g t a c g t C c A t C c g t a c g G _________________ A3 0 1 0 31 1 0 C24 0 0 14 0 0 G 0 14 0 0 0 31 T 0 0 0 51 0 14 _________________ Consensusa c g t a c g t Score=3+4+4+5+3+4+3+4=30 Scoring Motifs l t

  24. BruteForceMotifSearch • BruteForceMotifSearch(DNA, t, n, l) • bestScore 0 • for each s=(s1,s2 , . . ., st) from(1,1 . . . 1) to (n-l+1, . . ., n-l+1) • if (Score(s,DNA) > bestScore) • bestScore score(s, DNA) • bestMotif  (s1,s2 , . . . , st) • returnbestMotif Cost • (n - l + 1)t possible sets of starting positions • In each iteration O(lt) operations for scoring, total O(ltnt)

  25. A Different Look • Given v = “acgtacgt” and s acgtacgt cctgatagacgctatctggctatccacgtacAtaggtcctctgtgcgaatctatgcgtttccaaccat acgtacgt agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc acgtacgt aaaAgtCcgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt acgtacgt agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca acgtacgt ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtaGgtc • TotalDistance(v,DNA) = (min for each sequence over all positions) 1 0 0 2 1

  26. The Problem • Input:A tx n matrix DNA, and l, the length of the pattern to find • Output: A string v of l nucleotides that minimizesTotalDistance(v,DNA) over all strings of that length

  27. Median String Search Brute Force Algorithm • MedianStringSearch (DNA, t, n, l) • bestString AAA…A • bestDistance ∞ • for each l-mer sfrom AAA…A to TTT…T • ifTotalDistance(s,DNA) < bestDistance • bestDistanceTotalDistance(s,DNA) • bestWord  s • returnbestWord Cost • 4l possible l-mer • Time to compute minimum distance for each string O(n) • Total O(nt 4l)

  28. a G g t a c T t C c A t a c g t Alignment a c g t T A g t a c g t C c A t C c g t a c g G _________________ A 3 0 1 0 311 0 Profile C 24 0 0 14 0 0 G 0 14 0 0 0 31 T 0 0 0 51 0 14 _________________ Consensus a c g t a c g t Score 3+4+4+5+3+4+3+4 TotalDistance 2+1+1+0+2+1+2+1 Sum 5 5 5 5 5 5 5 5 At any column iScorei+ TotalDistancei = t For l columns Score+ TotalDistance = l * t Score= l * t - TotalDistance Motif Finding = O(lnt) Median String = O(nt 4l) Motif Finding Problem == Median String Problem l t

  29. Self Study • Can you convert the two brute force algorithms to branch and bound algorithms to reduce the # cheking ?

More Related