1 / 14

2.4 (cont.) Changing Units of Measurement

2.4 (cont.) Changing Units of Measurement. How shifting and rescaling data affect data summaries. x *. Shifts data by a. a. Changes scale. 0. x. Shifting and rescaling: linear transformations. Original data x 1 , x 2 , . . . x n Linear transformation:

Download Presentation

2.4 (cont.) Changing Units of Measurement

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 2.4 (cont.)Changing Units of Measurement How shifting and rescaling data affect data summaries

  2. x* Shifts data by a a Changes scale 0 x Shifting and rescaling: linear transformations • Original data x1, x2, . . . xn • Linear transformation: x* = a + bx, (intercept a, slope b)

  3. 0 0 32 150 0 12 100 9/5 40 2.54 Linear Transformationsx* = a+ b x Examples: Changing • from feet (x) to inches (x*): x*=12x • from dollars (x) to cents (x*): x*=100x • from degrees celsius (x) to degrees fahrenheit (x*): x* = 32 + (9/5)x • from ACT (x) to SAT (x*): x*=150+40x • from inches (x) to centimeters (x*): x* = 2.54x

  4. Shifting data only: b = 1x* = a + x • Adding the same value a to each value in the data set: • changes the mean, median, Q1 and Q3 by a • The standard deviation, IQR and variance are NOT CHANGED. • Everything shifts together. • Spread of the items does not change.

  5. weights of 80 men age 19 to 24 of average height (5'8" to 5'10") x = 82.36 kg NIH recommends maximum healthy weight of 74 kg. To compare their weights to the recommended maximum, subtract 74 kg from each weight; x* = x – 74 (a=-74, b=1) x* = x – 74 = 8.36 kg Shifting data only: b = 1x* = a + x (cont.) • No change in shape • No change in spread • Shift by 74

  6. Original x data: x1, x2, x3, . . ., xn Summary statistics: mean x median m 1st quartile Q1 3rd quartile Q3 stand dev s variance s2 IQR x* data: x* = a + bx x1*, x2*, x3*, . . ., xn* Summary statistics: new mean x* = a + bx new median m* = a+bm new 1st quart Q1*= a+bQ1 new 3rd quart Q3* = a+bQ3 new stand dev s* = b  s new variance s*2 = b2 s2 new IQR* = b  IQR Shifting and Rescaling data: x* = a + bx, b > 0

  7. weights of 80 men age 19 to 24, of average height (5'8" to 5'10") x = 82.36 kg min=54.30 kg max=161.50 kg range=107.20 kg s = 18.35 kg Change from kilograms to pounds: x* = 2.2x (a = 0, b = 2.2) x* = 2.2(82.36)=181.19 pounds min* = 2.2(54.30)=119.46 pounds max* = 2.2(161.50)=355.3 pounds range*= 2.2(107.20)=235.84 pounds s* = 18.35 * 2.2 = 40.37 pounds Rescaling data: x* = a + bx, b > 0 (cont.)

  8. 4 student heights in inches (x data) 62, 64, 74, 72 x = 68 inches s = 5.89 inches Suppose we want centimeters instead: x* = 2.54x (a = 0, b = 2.54) 4 student heights in centimeters: 157.48 = 2.54(62) 162.56 = 2.54(64) 187.96 = 2.54(74) 182.88 = 2.54(72) x* = 172.72 centimeters s* = 14.9606 centimeters Note that x* = 2.54x = 2.54(68)=172.2 s* = 2.54s = 2.54(5.89)=14.9606 Example of x* = a + bx not necessary!UNC method Go directly to this. NCSU method

  9. x data: Percent returns from 4 investments during 2003: 5%, 4%, 3%, 6% x = 4.5% s = 1.29% Inflation during 2003: 2% x* data: Inflation-adjusted returns. x* = x – 2% (a=-2, b=1) x* data: 3% = 5% - 2% 2% = 4% - 2% 1% = 3% - 2% 4% = 6% - 2% x* = 10%/4 = 2.5% s* = s = 1.29% x* = x – 2% = 4.5% –2% s* = s = 1.29% (note! that s* ≠ s – 2%) !! Example of x* = a + bx not necessary! Go directly to this

  10. Example • Original data x: Jim Bob’s jumbo watermelons from his garden have the following weights (lbs): 23, 34, 38, 44, 48, 55, 55, 68, 72, 75 s = 17.12; Q1=37, Q3 =69; IQR = 69 – 37 = 32 • Melons over 50 lbs are priced differently; the amount each melon is over (or under) 50 lbs is: • x* = x  50 (x* = a + bx, a=-50, b=1) -27, -16, -12, -6, -2, 5, 5, 18, 22, 25 s* = 17.12; Q*1 = 37 - 50 =-13, Q*3 = 69 - 50 = 19 IQR* = 19 – (-13) = 32 NOTE: s* = s, IQR*= IQR

  11. Z-scores: a special linear transformation a + bx Example. At a community college, if a student takes x credit hours the tuition is x* = $250 + $35x. The credit hours taken by students in an Intro Stats class have mean x = 15.7 hrs and standard deviation s = 2.7 hrs. Question 1. A student’s tuition charge is $941.25. What is the z-score of this tuition? x* = $250+$35(15.7) = $799.50; s* = $35(2.7) = $94.50

  12. Z-scores: a special linear transformation a + bx (cont.) Example. At a community college, if a student takes x credit hours the tuition is x* = $250 + $35x. The credit hours taken by students in an Intro Stats class have mean x = 15.7 hrs and standard deviation s = 2.7 hrs. Question 2. Roger is a student in the Intro Stats class who has a course load of x = 13 credit hours. The z-score is z = (13 – 15.7)/2.7 = -2.7/2.7 = -1. What is the z-score of Roger’s tuition? Roger’s tuition is x* = $250 + $35(13) = $705 Since x* = $250+$35(15.7) = $799.50; s* = $35(2.7) = $94.50 The z-score does not depend on the unit of measurement. This is why z-scores are so useful!!

  13. SUMMARY: Linear Transformations x* = a + bx • Linear transformations do not affect the shape of the distribution of the data -for example, if the original data is right-skewed, the transformed data is right-skewed

  14. SUMMARY: Shifting and Rescaling data, x* = a + bx, b > 0

More Related