1 / 15

F =?

F =?. X =?. B =?. THE GENETIC ALGORITHM FOR A SIGNAL ENHANCEMENT L.Karimova,Y.Kuandykov, N.Makarenko Institute of Mathematics, Almaty, Kazakhstan, chaos@math.kz. The measured signal might be corrupted by noise of different provenance and properties.

lang
Download Presentation

F =?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. F=? X=? B=? THE GENETIC ALGORITHM FOR A SIGNAL ENHANCEMENT L.Karimova,Y.Kuandykov, N.Makarenko Institute of Mathematics, Almaty, Kazakhstan, chaos@math.kz The measured signal might be corrupted by noise of different provenance and properties. Y - observed time series of paleodata X - clean signal (as if we have no noise) B - noise component Y=F(X,B)

  2. 2 • APPROACH • J. Levy Vehel, Signal enhancement based on Holder regularity analysis, • IMA Vol. In Math. And Its Applications, vol.132, pp. 197 -209 (2002) • Task • To find time series, which is less corrupted by noise and at the same time preserves relevant information about the structure • and method: • Time series enhancement based on the local Hölder regularity • Approach does not require any a priori assumption on noise structure and functional relation between original signal and noise • Signal may be nowhere differentiable with rapidly varying local regularity • Increment of the local Hölder exponent of the signal must be specified • New signal with prescribed regularity may be reconstructed using a few methods, particularly, the genetic algorithm.

  3. 3 exponent a Time series or signal is locally described by the polynomial and Geometrical interpretation of 0<a<1

  4. How to estimate a? S. Mallat, A Wavelet Tour of Signal Processing (1999) Jaffard S. //Pointwise smoothness, two-microlocalization and wavelet-coefficients, Publ. Mat. 35, No.1, p.155-168, 1991 4 • Wavelet transformation of : • has local exponent a in x0 if • has n vanishing moments: for

  5. 5 The scheme of the method K.Daoudi, J.LevyVehel, Y.Meyer, Construction of continuos function with prescribed local regularity, Constructive Approximation, 014(03), pp349-385 (1998) X Estimation of the local exponent Construction of a function with prescribed regularity Y + d INRIA software FracLab is available at http://www-rocq.inria.fr/fractales

  6. 6 • Y is close to in the norm • Local Hölderis prescribed, yj,k - wavelet coefficients of Y - wavelet coefficients of enhancedHaar wavelets How to construct a function with prescribed regularity? J. Levy Vehel, Signal enhancement based on Holder regularity analysis, IMA Vol. In Math. And Its Applications, vol.132, pp. 197-209 (2002) There are two conditions for the construction of a function with prescribed local regularity One can estimate and enhance the regularity structure by modification of wavelet decomposition coefficients, solving the next optimization problem

  7. 7 Steady State Genetic Algorithm for enhancement of time series It is imposed that where are real numbers 1.Initialization: random 2.Crossoverand mutation 3.The evolution function: is modifier 4. Replacement percentage is 60%

  8. Roulette wheel selection 8 Solutions = individuals of a population Function to be optimized is fitness =“adaptation to the environment” = f(x) Performance Convergence means a concentration of the population around the global optimum Initial random population Convergence of the population evolution Software C++GALib Wall M.//GALib homepage: http://lancet.mit.edu/ga

  9. 9 Enhancement of the cosmogenic isotopes time series by genetic algorithm and multifractal denoising. 14C annual data (1610-1760 AD) Enhanced data by genetic algorithm d=0.7 Multifractal denoising data d=0.7

  10. 10 Fourier spectra of original and enhanced 14C data ------ originaldata;------- multifractal denoising;------- genetic algorithm

  11. 11 Revealing deterministic dynamics from enhanced data Helama, S.et al., 2002: The supra-long Scots pine tree-ring record for Finnish Lapland: Part 2, The Holocene 12, 681-687. 3-D phase portraits of annual mean July temperature in northern Finnish Lapland, reconstructed from tree-ring widths of Scots pine. Correlation dimension of the time series. Enhanced data preserve their multifractal structure.

  12. 12 • CONCLUSION • 1. Enhancement based on local Holder regularity are useful when • signal is very irregular; • regularity may vary in time; • Hölder regularity bears essential information for further processing; • signal may be nonstationarity; • noise nature and its relation with “pure” signal are unknown; • 2. Advantages and drawbacks of Genetic Algorithm (GA) • GA is able to trace all (global and/or local) optima of functional of an arbitrary complexity • GA is well adapted to the task of signal enhancement • GA requires high computational capability

  13. GENES & DNA "Individuals" are characterized by there DNA (genome) which is composed of a string of genes. Numbers are represented in the computer by N bytes, which we call a genes. The DNA consists of a string of genes. Each individual carries one gene for each of the parameters in the parameter space P plus two extra ones, for the crossover rate Rc and for the mutations rate Rm. Also each individual has a performance measure M. The measure M is the enhancement times the efficiency

  14. Reproduction Each simulation year, depending on the population size, individuals reproduce by selecting a mate. Individuals with higher performance measure Mhave a higher probability of being selected as a mate. If the population is large, the rate of reproduction is smaller, and vice verse.

  15. Multifractal Denoising of 10Be time series (d=2). Wavelet transformation and Fourier spectra (1-real, 2-denoised) 11 1 2

More Related