280 likes | 596 Views
Introduction to algorithm design and recursion. CS125 Spring 2007 Arthur Kantor. Algorithm. An algorithm is a computational process for solving a problem. computational : a computer must be able to perform the steps of the process
E N D
Introduction to algorithm design and recursion CS125 Spring 2007 Arthur Kantor
Algorithm • An algorithm is a computational process for solving a problem. • computational: a computer must be able to perform the steps of the process • This concept was formalized by Alan Turing and Alonzo Church in the 1930ies • One of the great results of computer science
Algorithm • An algorithm is a computational process for solving a problem. • solving • The algorithm must actually give the correct solution after it terminates • problem • Typically the problem is somewhat general. • E.g. “Sort any list of numbers” instead of “Sort this particular list of numbers”
Algorithm design • The next few weeks we will be talking about designing algorithms to solve problems • We can talk about whether the algorithm is described precisely enough so that it can be translated into a computer program • We can talk about whether the algorithm solves the given problem • We do not need to discuss the actual code
Recursive algorithm • A recursive algorithm solves the problem by possibly using the result of applying itself to a simpler problem • Example: Draw this picture
Another example • Draw this picture
Properties of all recursive algorithms • A recursive algorithm solves the large problem by using its solution to a simpler sub-problem • divide and conquer approach • Eventually the sub-problem is simple enough that it can be solved without applying the algorithm to it recursively • This is called the ‘base case’
Another example • The factorial function: multiply together all numbers from 1 to n. • denoted n! n!=n*(n-1)*(n-2)*…2*1 n!= n*(n-1)! if n>0 1 if n==0
Another example • The factorial function: multiply together all numbers from 1 to n. • denoted n! n!=n*(n-1)*(n-2)*…2*1 n!= n*(n-1)! if n>0 1 if n==0 • General case: Uses a solution to a simpler sub-problem • Base case: Solution is given directly
n!= n*(n-1)! if n>0 • 1 if n==0 4! Walk-through 4!=
n!= n*(n-1)! if n>0 • 1 if n==0 Java implementation of n! public int factorial(int n){ if (n==0) return 1; else return n*factorial(n-1); }
public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=1 Returns 1*factorial(0) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=0 Returns 1 n=1 Returns 1*factorial(0) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=1 Returns 1*factorial(0) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) 1 • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) n=2 Returns 2*factorial(1) 1 • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) 2 • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
n=4 Returns 4*factorial(3) 6 • public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4)
public int factorial(int n){ • if (n==0) • return 1; • else • return n*factorial(n-1); • } factorial(4); factorial(4) 24
n=4 Returns 4*factorial(3) n=3 Returns 3*factorial(2) How the computer does it • The computer remembers the entire stack of partially completed function calls • The execution of caller is paused until the called function returns with its answer Execution of factorial(4) is paused until factorial(3) returns with its answer Once factorial(3) returns, execution of factorial(4) continues
Why recursion? • We could have implemented n! using a while loop (how?) • In general, any recursively defined function can be re-implmented with a while loop. • Sometimes it is much more natural to specify a function recursively than with a loop
Another example • prod(list) returns a product of all the numbers in the list • prod({1,3,3,4}) should return 36
Implementation of prod() float prod(float[] list){ return helperProd(list, 0); } float helperProd(float[] list, int k){ if (k==list.length) return 1; else return list[k]*helperProd(list,k+1); }
float helperProd(float[] list, int k){ if (k==list.length) return 1; else return list[k]*helperProd(list,k+1); } walkthrough helperProd({1,3,3,4},0)