130 likes | 356 Views
Giant Rabi splitting in metal/semiconductor nanohybrids. J. Bellessa , C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique de la Matière Condensée et Nanostructure, Lyon, France Laboratoire de Photonique et Nanostructures, Marcoussis, France
E N D
Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique de la Matière Condensée et Nanostructure, Lyon, France Laboratoire de Photonique et Nanostructures, Marcoussis, France Groupement d’Etude des Semiconducteurs, Montpellier, France
Properties of surface plasmons Description of surface plasmons Plasmons in strong coupling Hybridisation localised plasmon/exciton Localised plasmon in nanodisks Nanodisks with organic semiconductor Particularities of the hybrid states Inhomogeneous broadenings Geometrical effects Conclusion Outline
Surface plasmon Interface metal / dielectric material Properties of surface plasmons Dielectric 100nm 20nm Metal W. L. Barnes et al., Nature, 418, 306 (2002) 2D 1D plasmon guide 0D nanoparticules • Damping in the metal
Delocalised plasmon in strong coupling Properties of surface plasmons Weak coupling : Luminescence enhancement with nanoantennas • Strong interaction between plasmons and : • Aggregated dyes • Laser dyes such as Rhodamine 6G • Semiconductor nanocrystals arrays : CdSe dots under a thin silver film • Rabi splitting of 112 meV J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier., PRL 93, 36404 (2004) T.K. Hakala et al. PRL 103 053602 (2009) D.E. Gomez et al. Nano Lett. 10 274 (2010)
Plasmon in strong coupling Properties of surface plasmons GOLD Plasmons in nanoshells Metallic nanostructures Holes and voids in metallic structures N. T. Fofang et al. Nanoletters 8 10 3481 (2008) J. Dintinger et al. Phys. Rev. B 71, 035424 (2005) Y. Sugawara et al. PRL 97, 266808 (2006)
Hybridisation localised plasmon/exciton Localised plasmons Ag Nanodisks control of the environment and size • Discrete Plasmon resonance • Distance between the disks 200nm • Low inhomogeneous broadening 300nm
Hybridisation localised plasmon/exciton Bare plasmon resonances • Transmission of nanodisks • Plasmon resonances • energy : size dependant • linewidth 150meV • No plasmon overlapping
Hybridisation localised plasmon/exciton Absorption (a. u.) 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 1.0 0.9 0.8 (a) 0.7 0.6 Transmission 0.5 0.4 111 nm 0.3 121 nm 0.2 143 nm 0.1 0.0 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Energy (eV) (b) Nanodisks with TDBC Nanodisks covered with a TDBC layer Three transmission dips TDBC absorption two size dependant dips Uncoupled regions Bare TDBC
Hybridisation localised plasmon/exciton Eplasmon Eexciton ħW Two levels model • Formation of localised plasmon/ exciton mixed states
Hybridisation localised plasmon/exciton (b) Nanodisk diameter (nm) Formation of polaritons • Rabi splitting depends on TDBC thickness • FDTD simulations • Rabi energy 450meV 20% of the transition energy 1 TDBC layer 2 TDBC layers 2.5 2.4 2.5 2.3 2.4 2.2 2.3 450meV 2.1 2.2 Energy (eV) 2.0 2.1 Energy (eV) 1.9 2.0 1.8 1.9 1.7 1.8 1.6 1.7 100 120 140 160 180 200 220 1.6 Nanodisk diameter (nm) 100 120 140 160 180 200 220 J. Bellesa et al. Phys. Rev. B 80, 33303 (2009)
Particularities of the hybrid states Excitons photon N Homogeneous and inhomogeneous broadenings • In microcavities • In nanoparticles ? N N. F. Fofang et al. Nanolett. 2008, 8 (10), 3481 exciton plasmons ERabi<ginhomogène Strong coupling
Particularities of the hybrid states Distance between disks Large modification of the bare plasmons Diffractive effects Rabi energy roughly unchanged
Conclusion Localized plasmon/exciton hybridization Rabi splitting of 450 meV (20% transition energy) Model system for cylindrical nanoparticles with controlled size and environment