60 likes | 67 Views
Explore elementary symmetry states for quantum computing, understand their significance in information processing, and pave the way for advanced quantum algorithms. Dive into the unique properties of these states and their potential applications in computational tasks.
E N D
E-symmetry states: (000) #1 (010) #4 (020) #12 (030) #27 (040) #48 (050) #81 (100) #3 (110) #9 (120) #21 (130) #42 (140) #70 (200) #6 (210) #16 (220) #33 (230) #60 (240) #96 (300) #14 (310) #28 (320) #51 (330) #86 (400) #24 (410) #43 (420) #73 (500) #41 (510)* #66 (600) #61 (600) #94 (700) #88 1-1 1+1 3-1 3+1 5-1 5+1 7-1 7+1 9-1 9+1 11-1 11+1 (Figures of this page are scaled down to 90% of size of the other figures here.)
(001) #2 (011) #8 (021) #18 (031) #36 (041) #64 (101) #5 (111) #15 (121) #30 (131) #54 (141) #90 (201) #10 (211) #23 (221) #45 (231) #77 (301) #19 (311) #39 (321)* #67 (401) #32 (411) #57 (421) #92 (501) #52 (511) #85 (601)* #75 E-symmetry states (cont’d): 2-2 2+2 4-2 4+2 6-2 6+2 8-2 8+2 10-2 10+2
(002) #7 (012) #17 (022) #35 (032)* #63 (102) #13 (112) #29 (122) #53 (132) #89 (202) #22 (212) #44 (222) #76 (302) #37 (312) #65 (402) #56 (412) #91 (502) #83 E-symmetry states (cont’d): 4-4 4+4 6-4 6+4 8-4 8+4 10-4 10+4
(003) #11 (013) #26 (023) #47 (033) #79 (103) #20 (113) #40 (123) #69 (203) #31 (213) #58 (223) #95 (303) #49 (313) #82 (403) #71 E-symmetry states (cont’d): 5-5 5+5 7-5 7+5 9-5 9+5 11-5 11+5
(004) #25 (014) #46 (024) #78 E-symmetry states (cont’d): (104) #38 (114) #68 (204) #55 (214) #93 (304) #80 7-7 7+7 9-7 9+7 11-7 11+7
(005) #34 (015) #62 (006) #59 (007)* #74 (105) #50 (115) #87 (106) #84 (205) #72 E-symmetry states (cont’d): 8-8 8+8 10-8 10+8 E-symmetry states (cont’d): 10-10 10+10 E-symmetry states (cont’d): 11-11 11+11