230 likes | 381 Views
Queue theory. 1.1.سيستم هاي صف به تجزيه و تحليل و مدلسازي پديده صف ( Queue ) يا خط انتظار ( Waiting Line ) مي پردازند و از جمله مباحث مهم تحقيق در عمليات است. در ابتدا چند مثال از صف بيان مي کنيم:. 1.1 Examples. Example 1.1.1 Supermarket .
E N D
1.1.سيستم هاي صف به تجزيه و تحليل و مدلسازي پديده صف (Queue) يا خط انتظار (Waiting Line) مي پردازند و از جمله مباحث مهم تحقيق در عمليات است. • در ابتدا چند مثال از صف بيان مي کنيم:
1.1 Examples • Example 1.1.1 Supermarket. • How long do customers have to wait at the checkouts? Are there enough checkouts? • Example 1.1.2 Production system. • A machine produces different types of products. • What is the production lead time of an order? • What is the reduction in the lead time? • when we have an extra machine? Should we assign priorities to the orders? • Example 1.1.3 Post office. • In a post office there are counters specialized in e.g. stamps, packages, financial transactions ,etc. • Are there enough counters? • Separate queues or one common queue in front of counters with the same specialization?
Example 1.1.4 Data communication. • Example 1.1.5 Main frame computer.
Example 1.1.6 Parking place. • They are going to make a new parking place in front of a super market. • How large should it be?
Example 1.1.7 Call centers of an insurance company. • Questions by phone, regarding insurance conditions, are handled by a call center. • This call center has a team structure, where each team helps customers from a specific region only. • How long do customers have to wait before an operator becomes available? • Is the number of incoming telephone lines enough? • Are there enough operators? Pooling teams?
Example 1.1.8 Toll booths. • Motorists have to pay toll in order to pass a bridge. • Are there enough toll booths? • Example 1.1.9 Traffic lights. • How do we have to regulate traffic lights such that the waiting times are acceptable?
2.2Queueingmodels and Kendall's notation • 2.2.1 Queueing models : • The basic queueing model is shown in figure 3.1. It can be used to model, e.g., machines or operators processing orders or communication equipment processing information. • Figure 3.1: Basic queueing model
A queueing model is characterized by: • The arrival process of customers. • Usually we assume that the interarrival times are independent and have a common distribution. In many practical situations customers arrive according to a Poisson stream (i.e. exponential interarrival times). Customers may arrive one by one, or in batches. An example of batch arrivals is the customs office at the border where travel documents of bus passengers have to be checked.
The behaviour of customers. • Customers may be patient and willing to wait (for a long time). Or customers may be impatient and leave after a while. For example, in call centers, customers will hang up when they have to wait too long before an operator is available, and they possibly try again after a while. • The service times. • Usually we assume that the service times are independent and identically distributed, and that they are independent of the interarrival times. For example, the service times can be deterministic or exponentially distributed. It can also occur that service times are dependent of the queue length. For example, the processing rates of the machines in a production system can be increased once the number of jobs waiting to be processed becomes too large.
The service discipline. • Customers can be served one by one or in batches. We have many possibilities for the order in which they enter service. We mention: • first come first served, i.e. in order of arrival;FIFO • Service In Random Order ; SIRO • last come first served (e.g. in a computer stack or a shunt buffer in a production line);LIFO • priorities (e.g. shortest processing time first); • processor sharing (in computers that equally divide their processing power over all jobs in the system).
The service capacity. • There may be a single server or a group of servers helping the customers. • The waiting room. • There can be limitations with respect to the number of customers in the system. For example, in a data communication network, only finitely many cells can be buffered in a switch. The determination of good buffer sizes is an important issue in the design of these networks.
2.2.2.Kendall's notation • يک سيستم صف را با شش پارامتر نشان مي دهيم که به صورت زير نشان مي دهيم : (a/b/c) : (d/e/f ) • a الگوي ورود مشتريان interarrival time distribution • b الگوي سرويسservice time distribution • c تعداد سرويس دهندهnumber of servers. • d نوع ترتيب يا نظم حاکم بر صف The service discipline. • e ظرفيت سيستم capacity The waiting room • f ظرفيت جمعيت سيستم صف
. به عنوان مثال اگر داشته باشيم • (M/D/4):(SIRO/10/∞) به معناي اين است که الگوي ورود مشتريان از تابع توزيع نمايي تبعيت مي کند در حاليکه زمان دريافت سرويس زماني ثابت و غيراحتمالي است. در اين سيستم صف چهار خدمت دهنده وجود دارد • و ترتيب صف از نوع تصادفي يا SIROاست. اين سيستم فقط ظرفيت 10 مشتري را دارد ولي جمعيت مشتريان بي نهايت است.
مرسوم است که براي الگوي ورود و الگوي سرويس (يعني a وb) از علائم زير استفاده شود: • M براي توزيع نمايي • G براي هر توزيع خاص • D براي توزيع ثابت غير احتمالي • Ek براي توزيع ارلنگ k مرحله اي • He براي توزيع فوق نمايي • همچنين براي ترتيب صف (يعني d) از علائم زير استفاده مي شود: • FCFS or FIFO اوّلين وارده اوّلين خدمت گيرنده • SIRO دريافت خدمت به صورت تصادفي • LCFS or LIFO آخرين وارده اولين خدمت گيرنده • PR ترتيب همراه با اولويت • GD ترتيب خاص و غيرمعمولي
. 2.3مدلسازي يک سيستم صف : • يک سيستم صف مي تواند يک سيستم ساده يک کانالهباشد. مانند يک تلفن عمومي باشد، • ( : صف ) • ( : سرويس دهنده) S ورود S خروج
يک سيستم صف مي تواند شامل يک صف و چند سرويس دهنده باشد .مانند سيستمي که در يک آرايشگاه مشاهده مي گردد. خروج خروج ورود خروج
يک سيستم صف مي تواند شامل چندين صف و چندين خدمت دهنده باشد مانند سيستمي که در يک پمپ بنزين مشاهده مي گردد. خروج خروج ورود خروج
يک سيستم صف مي تواند به صورت چند مرحله اي باشد مانند سيستمي که در يک خط توليد صنعتي مشاهده مي گردد. ورود خروج
و نهايتاً يک سيستم صف مي تواند به صورت يک شبکه از سيستم هاي کوچکتر باشد که با هم کار مي کنند و در آن مشتريان از يک صف به صف ديگر مراجعه مي نمايند تا نهايتاً پس از دريافت سرويس کامل از سيستم خارج شوند.
. 2.4مدلسازي صف اين امکان را مي دهد که بتوانيم به سؤالاتي از قبيل زير پاسخ دهيم : • چند درصد اوقات سرويس دهندگان مشغول و چند درصد اوقات بيکار هستند ؟ • چند سرويس دهنده لازم است در اختيار داشته باشيم تا بتوانيم خدمت قابل قبولي ارائه دهيم ؟ • به طور متوسط چند نفر در صف قرار مي گيرند؟ • بطور متوسط چند دقيقه يک مشتري در صف معطل(idle) مي شود؟ • توزيع احتمالي زمان انتظار چگونه است؟ • توزيع احتمالي تعداد مشتريان در سيستم چقدر است؟ • با توجه به تعداد مشتريان در صف و تعداد خدمت دهنده ها چه فضايي مورد نياز خواهد بود؟